Home
Class 12
MATHS
intsqrt(x^(2)+5)dx...

`intsqrt(x^(2)+5)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \sqrt{x^2 + 5} \, dx\), we can use a standard formula for integrating expressions of the form \(\sqrt{x^2 + a^2}\). ### Step-by-Step Solution: 1. **Identify the integral**: We have the integral \(\int \sqrt{x^2 + 5} \, dx\). Here, we can recognize that \(a^2 = 5\), which means \(a = \sqrt{5}\). 2. **Use the formula**: The formula for integrating \(\sqrt{x^2 + a^2}\) is: \[ \int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln \left| x + \sqrt{x^2 + a^2} \right| + C \] where \(C\) is the constant of integration. 3. **Substitute \(a\)**: In our case, since \(a^2 = 5\), we have \(a = \sqrt{5}\). Now we can substitute \(a\) into the formula: \[ \int \sqrt{x^2 + 5} \, dx = \frac{x}{2} \sqrt{x^2 + 5} + \frac{5}{2} \ln \left| x + \sqrt{x^2 + 5} \right| + C \] 4. **Final answer**: Thus, the integral evaluates to: \[ \int \sqrt{x^2 + 5} \, dx = \frac{x}{2} \sqrt{x^2 + 5} + \frac{5}{2} \ln \left| x + \sqrt{x^2 + 5} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14B|44 Videos
  • SCALAR, OR DOT, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 23|34 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos

Similar Questions

Explore conceptually related problems

intsqrt(x^(2)+x)dx

intsqrt(x^(2)-2)dx

intsqrt(4-x^(2))dx

Evaluate : (i) intsqrt(x^(2)-16)dx (ii) intsqrt(4x^(2)-5)dx (iii) intsqrt(17x^(2)-11)dx

intsqrt(2x-x^(2))dx

intsqrt(2x^(2)-3)dx

intsqrt(3x^(2)+4)dx

intsqrt(4-9x^(2))dx

intsqrt(4x^(2)+9)dx

intsqrt(4x^2+5)dx=