Home
Class 12
MATHS
Evaluate : (i) int(0)^(2)e^(x//2)dx (ii)...

Evaluate : `(i) int_(0)^(2)e^(x//2)dx` `(ii) int_(2)^(4)(x)/((x^(2)+1))dx` `(iii) int_(0)^(1)cos^(-1)xdx`

Text Solution

Verified by Experts

`(i)` Put `(x)/(2)=t` so that `dx=2dt`.
Also, `(x=0impliest=0)` and `(x=2=t=1)`.
`:.int_(0)^(2)e^(x//2)dx=2int_(0)^(1)e^(t)dt=2[e^(t)]_(0)^(1)=2(e-1)`.
`(ii)` Put `(x^(2)+1)=t` so that `xdx=(1)/(2)dt`.
Also, `(x=2impliest=5)` and `(x=4impliest=17)`.
`:.int_(2)^(4)(x)/((x^(2)+1))dx=(1)/(2)int_(5)^(17)(dt)/(t)=(1)/(2)[log|t|]_(5)^(17)=(1)/(2)(log17-log5)`.
`(iii)` Put `x=cost` so that `dx=-sint dt`.
Also, `(x=0impliest=(pi)/(2))` and `(x=1impliest=0)`.
`:.int_(0)^(1)cos^(-1)xdx=-int_(pi//2)^(0)cos^(-1)(cost)sintdt=int_(0)^(pi//2)tsintdt`
`=[t(-cost)]_(0)^(pi//2)-int_(0)^(pi//2)1*(-cost)dt` [integrating by parts]
`=[sint]_(0)^(pi//2)=1`.
`(iv)` Let `(2x+3)-=A*(d)/(dx)(5x^(2)+1)+B`.
Then, `(2x+3)-=(10x)A+B`.
Comparing the coefficients of like powers of `x`, we get
`10A=2` or `A=(1)/(5)` and `B=3`.
`:.(2x+3)=(1)/(5)(10x)+3`.
So, `int_(0)^(1)((2x+3))/((5x^(2)+1))dx=int_(0)^(1)((1)/(5)(10x)+3)/((5x^(2)+1))dx`
`=(1)/(5)(10x)/((5x^(2)+1))dx+3int_(0)^(1)(dx)/((5x^(2)+1))`
`=(1)/(5)[log|5x^(2)+1|]_(0)^(1)+(3)/(5)int_(0)^(1)(dx)/(x^(2)+((1)/(sqrt(5)))^(2))`
`=(1)/(5)log6+(3)/(5)*sqrt(5)[tan^(-1)(x)/((1//sqrt(5)))]_(0)^(1)`
`=(1)/(5)log6+(3)/(sqrt(5))(tan^(-1)sqrt(5))`.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16A|61 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16B|50 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

Evaluate : (i) int_(0)^(1)sin^(-1)xdx , (ii) int_(1)^(2)(lnx)/(x^(2))dx , (iii) int_(0)^(1)x^(2)sin^(-1)xdx .

Evaluate : (i) int_(0)^(1)sin^(-1)xdx , (ii) int_(1)^(2)(lnx)/(x^(2))dx , (iii) int_(0)^(1)x^(2)sin^(-1)xdx .

Evaluate : (i) int_(0)^(1)x(1-x)^(n)dx (ii) int_(0)^(1)x(1-x)^(3//2)dx

" (iii) "1=int_(0)^(1)(x-1)(x+2)dx

Evaluate: int_(1)^(2)(1)/((x+1)(x+2))dx( ii) int_(1)^(2)(1)/(x(1+x^(2)))dx

Evaluate: int_(0)^(4)(1)/(x+sqrt(x))dx( ii) int_(0)^(1)(2x)/(5x^(2)+1)dx

Evaluate : (i) int_(0)^(1//2)(dx)/(sqrt(1-x)) (ii) int_(0)^(1)((1-x)/(1+x))dx

Evaluate : int_(0)^(pi) cos^(2)x.dx

int_(0)^(1)(e^(x))/((1+e^(2x)))dx