Home
Class 12
MATHS
Prove that int(0)^(pi)(xtanx)/((secx+tan...

Prove that `int_(0)^(pi)(xtanx)/((secx+tanx))dx=pi((pi)/(2)-1)`.

Text Solution

AI Generated Solution

To prove that \[ \int_{0}^{\pi} \frac{x \tan x}{\sec x + \tan x} \, dx = \pi \left( \frac{\pi}{2} - 1 \right), \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16A|61 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16B|50 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(tanx)/((1+tanx))dx=?

int_(0)^(pi)(x sinx)/((1+sinx))dx=pi((pi)/(2)-1)

int_(0)^(pi)(x tanx)/((secx+cosx))dx=(pi^(2))/(4)

int_(0)^(pi)(x tanx)/(secx+cosx)dx is

int_(0)^(pi)(x tanx)/((secxcosecx))dx=(pi^(2))/(4)

int_(0)^(pi/3)(x)/(1+secx)dx

Evaluate: int_0^pi(xtanx)/(s e c x+tanx)dx

int_(0)^(pi//2)(dx)/((1+sqrt(tanx)))=(pi)/(4)

int_(0)^(pi//2)(1)/((1+tanx))dx=?

Prove that: int_(0)^( pi)(x)/(1-cos alpha sin x)dx=(pi(pi-alpha))/(sin alpha)