Home
Class 12
MATHS
Evaluate int(0)^(pi)(x)/((1+sinx))dx....

Evaluate `int_(0)^(pi)(x)/((1+sinx))dx`.

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_{0}^{\pi} \frac{x}{1 + \sin x} \, dx \), we can use the property of definite integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] In our case, \( a = 0 \) and \( b = \pi \). Therefore, we can write: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16A|61 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16B|50 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(pi//4)(dx)/(1+sinx)

int_(0)^(pi)(dx)/((1+sinx))=?

Evaluate int_(0)^(pi)(sin 6x)/(sinx) dx .

Evaluate int_(0)^(pi//2)(x)/((sinx+cosx))dx .

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

Evaluate: int_0^(pi//2)x/(sinx+cosx)dx

Evaluate int_0^(pi/2) x/(sinx+cosx)dx

Evaluate: int_0^pi (cos x)/(1+sinx)^2 dx

Evaluate : int_(0)^(pi) (1)/(3 + 2 sinx + cos x ) dx