Home
Class 12
MATHS
Evaluate int(0)^(pi)(xsinx)/((1+cos^(2)x...

Evaluate `int_(0)^(pi)(xsinx)/((1+cos^(2)x))dx`.

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, dx \), we can use the property of definite integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] In this case, \( a = 0 \) and \( b = \pi \). Therefore, we can write: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16A|61 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16B|50 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^( pi)(x sin x)/(1+cos^(2)x)dx

Evaluate: int_(0)^( pi)(x sin x)/(1+cos^(2)x)dx

Evaluate: int_(0)^( pi)(x sin x)/(1+cos^(2)x)dx

Evaluate: int_(0)^( pi)(x sin x)/(1+cos^(2)x)dx

int_(0)^(pi//2)(sinx)/((1+cos^(2)x))dx

Evaluate int _(0)^(pi)(x)/(1+ cos^(2)x)dx .

int_(0)^( pi)(sin x)/(1+cos^(2)x)dx =

int_(0)^(pi//2)(dx)/((1+cos^(2)x))

Evaluate int_(0)^(pi)(dx)/(1+3cos^(2)x)dx