Home
Class 12
MATHS
int(pi//3)^(pi//2)cosecxdx=?...

`int_(pi//3)^(pi//2)cosecxdx=?`

A

`(1)/(2)log2`

B

`(1)/(2)log3`

C

`-log2`

D

none of these

Text Solution

Verified by Experts

`I=int_(pi//3)^(pi//2)cosecxdx=[logtan"(x)/(2)]_(pi//3)^(pi//2)=(log1-log.(1)/(sqrt(3)))=(1)/(2)log3`.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16D|17 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(pi//6)^(pi//4)cosecxdx

int_(pi//4)^(pi//2)cotxdx=?

int_(pi/2)^(3pi/2)cos xdx

int_(-pi/2)^(pi/2)cosx dx

Find the value of the following: int_(pi/6)^(pi/4) cosecxdx

int_(2pi)^((3pi)/2)cosx dx

int_(pi//6)^(pi//3)cos^(2)x dx=

If int_(-pi//4)^(3pi//4)(e^(pi//4)dx)/((e^(x)+e^(pi//4))(sinx+cosx))=kint_(-pi//2)^(pi//2)secxdx , then the value of k is

int_(pi/3)^(pi/2) sinx dx

Evaluate : int_(-pi/2)^(pi/2)xcos^2 xdx