Home
Class 12
MATHS
int(0)^(pi//4)(e^(tanx))/(cos^(2)x)dx=?...

`int_(0)^(pi//4)(e^(tanx))/(cos^(2)x)dx=?`

A

`(e-1)`

B

`(e+1)`

C

`((1)/(e)+1)`

D

`((1)/(e)-1)`

Text Solution

Verified by Experts

The correct Answer is:
A

`I=int_(0)^(pi//4)e^(tanx)sec^(2)xdx=[e^(t)dt]_(0)^(1)`, where `tanx=t`.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16D|17 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

int2^(tanx)/(cos^2x)dx

int_(0)^(pi//2)(dx)/((4+9cos^(2)x))

int_0^(pi//2)log(tanx)dx

(i) int_(0)^(pi//4) e^(tanx) . sec^(2) x dx (ii) int_(0)^(pi//4) (sin (cos 2x))/(" cosec " 2x)dx

Evaluate the following : int_(0)^(pi//4)e^(x)(1+tanx+tan^(2)x)dx

int_(0)^(pi//4)(dx)/((1+cos2x))

int_(0)^(pi//2)(e^(sin x)- e^(cos x)))dx=

int_(0)^(pi//2)e^(cos^(2)x)sin 2x dx=

int_(pi//3)^(pi//4)(tanx+cotx)^(2)dx