Home
Class 12
MATHS
int(0)^(pi//2)(cosx)/((1+sin^(2)x))dx=?...

`int_(0)^(pi//2)(cosx)/((1+sin^(2)x))dx=?`

A

`(pi)/(2)`

B

`(pi)/(4)`

C

`pi`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + \sin^2 x} \, dx, \] we will use the substitution \( \sin x = t \). ### Step 1: Substitution Let \( \sin x = t \). Then, the differential \( dx \) can be expressed as: \[ \cos x \, dx = dt. \] This means that \( dx = \frac{dt}{\cos x} \). ### Step 2: Change of Limits Next, we need to change the limits of integration. When \( x = 0 \): \[ t = \sin(0) = 0. \] When \( x = \frac{\pi}{2} \): \[ t = \sin\left(\frac{\pi}{2}\right) = 1. \] Thus, the new limits of integration are from \( t = 0 \) to \( t = 1 \). ### Step 3: Rewrite the Integral Substituting into the integral, we have: \[ I = \int_{0}^{1} \frac{dt}{1 + t^2}. \] ### Step 4: Evaluate the Integral The integral \( \int \frac{dt}{1 + t^2} \) is a standard integral, and its result is: \[ \int \frac{dt}{1 + t^2} = \tan^{-1}(t). \] Thus, we can evaluate: \[ I = \left[ \tan^{-1}(t) \right]_{0}^{1}. \] ### Step 5: Apply the Limits Now we apply the limits: \[ I = \tan^{-1}(1) - \tan^{-1}(0). \] We know that: \[ \tan^{-1}(1) = \frac{\pi}{4} \quad \text{and} \quad \tan^{-1}(0) = 0. \] Therefore, \[ I = \frac{\pi}{4} - 0 = \frac{\pi}{4}. \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + \sin^2 x} \, dx = \frac{\pi}{4}. \] ---

To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + \sin^2 x} \, dx, \] we will use the substitution \( \sin x = t \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16D|17 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(sinx cosx)/(1+sin^(4)x)dx=

int_(0)^( pi/2)(cosx)/(1+sin x)dx

Evaluate : int_(0)^(pi//2) (cosx)/((1+sin x)(2+sinx)) dx

Evaluate : (i) int_(0)^(pi//2)(cosx)/((cos\ (x)/(2)+sin\ (x)/(2)))dx (ii) int_(0)^(pi//2)(cosx)/((1+cosx+sinx))dx

int_(0)^(pi//2)(cosx)/((sinx+cosx))dx=(pi)/(4)

int_(0)^( pi)(x)/((1+sin^(2)x))dx

Evaluate the following integrals: int_(0)^(pi//2) (cosx)/(1+cos x+sin x)dx

int_(0)^(pi//2) (cosx)/((1+sin x)(2+sin x) ) dx =

int_(pi//4)^(pi//2)((1-3cosx))/(sin^(2)x)dx

int_(0)^((pi)/2)(cos2x)/(cosx+sinx)dx=