Home
Class 12
MATHS
int(1//pi)^(2//pi)(sin(1//x))/(x^(2))dx=...

`int_(1//pi)^(2//pi)(sin(1//x))/(x^(2))dx=?`

A

`1`

B

`(1)/(2)`

C

`(3)/(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{\frac{1}{\pi}}^{\frac{2}{\pi}} \frac{\sin\left(\frac{1}{x}\right)}{x^2} \, dx \), we can use a substitution method. Here’s the step-by-step solution: ### Step 1: Substitution Let \( t = \frac{1}{x} \). Then, we differentiate to find \( dx \): \[ dx = -\frac{1}{t^2} dt \] This means that \( \frac{1}{x^2} = t^2 \). Therefore, we can rewrite the integral as: \[ \int \sin\left(\frac{1}{x}\right) \frac{1}{x^2} \, dx = \int \sin(t) \cdot t^2 \left(-\frac{1}{t^2}\right) dt = -\int \sin(t) \, dt \] ### Step 2: Change of Limits Next, we need to change the limits of integration. When \( x = \frac{1}{\pi} \), then \( t = \pi \). When \( x = \frac{2}{\pi} \), then \( t = \frac{\pi}{2} \). Therefore, the limits change from \( x: \left[\frac{1}{\pi}, \frac{2}{\pi}\right] \) to \( t: \left[\pi, \frac{\pi}{2}\right] \). ### Step 3: Adjust the Integral Now we can write the integral with the new limits: \[ -\int_{\pi}^{\frac{\pi}{2}} \sin(t) \, dt \] Since the limits are reversed, we can switch them and remove the negative sign: \[ \int_{\frac{\pi}{2}}^{\pi} \sin(t) \, dt \] ### Step 4: Integrate The integral of \( \sin(t) \) is: \[ -\cos(t) \] Thus, we evaluate: \[ \left[-\cos(t)\right]_{\frac{\pi}{2}}^{\pi} \] ### Step 5: Evaluate the Limits Now we substitute the limits: \[ -\cos(\pi) - \left(-\cos\left(\frac{\pi}{2}\right)\right) = -(-1) - (0) = 1 \] ### Final Answer Therefore, the value of the integral is: \[ \int_{\frac{1}{\pi}}^{\frac{2}{\pi}} \frac{\sin\left(\frac{1}{x}\right)}{x^2} \, dx = 1 \]

To solve the integral \( \int_{\frac{1}{\pi}}^{\frac{2}{\pi}} \frac{\sin\left(\frac{1}{x}\right)}{x^2} \, dx \), we can use a substitution method. Here’s the step-by-step solution: ### Step 1: Substitution Let \( t = \frac{1}{x} \). Then, we differentiate to find \( dx \): \[ dx = -\frac{1}{t^2} dt \] This means that \( \frac{1}{x^2} = t^2 \). Therefore, we can rewrite the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16D|17 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

int_(1//pi)^(2//pi)(sin(1//x)+cos(1//x))/(x^(2))dx=

int_(-pi)^( pi)(sin^(2)x)/(1+a^(x))dx

The value of int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is

The value of int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x)) dx is

Evaluate: int_(-pi/2)^( pi/2)(x sin x)/(e^(x)+1)dx

The value of the integral int_(-pi//2)^(pi//2)(sin^(2)x)/(1+e^(x))dx is

int_(-pi)^(pi)(1-x^(2))sin x cos^(2)x dx=

int_(-pi//2)^(pi//2)(sin^(2n-1)x)/(1+cos^(2n)x)dx=

int_(0)^( pi)(sin x)/(1+cos^(2)x)dx =