Home
Class 12
MATHS
int(0)^(1)(dx)/(e^(x)+e^(-x))...

`int_(0)^(1)(dx)/(e^(x)+e^(-x))`

A

`(1-(pi)/(4))`

B

`tan^(-1)e`

C

`tan^(-1)e+(pi)/(4)`

D

`tan^(-1)e-(pi)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
D

`I=int_(0)^(1)(dx)/((e^(x)+(1)/(e^(x))))=int_(0)^(1)(e^(x)dx)/((e^(2x)+1))=int_(0)^(e)(dt)/((t^(2)+1))`, where `e^(x)=t`.
`=[tan^(-1)t]_(1)^(e)=(tan^(-1)e-(pi)/(4))`.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16D|17 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(oo)(dx)/(e^(x)+e^(-x))

int_(0)^(1) (1)/(e^(x) +e^(-x)) dx

int_(0)^(1)(1)/(e^(x)+e^(-x))dx=

If int_(0)^(1)(1)/(e^(x)+e^(-x))dx = tan^(-1)p , then : p =

int_(0)^(oo)(2)/(e^(x)+e^(-x))dx

The value of int_(0) ^(1) (dx )/( e ^(x) + e) is equal to

int_(0)^(1)(e^(x)dx)/(1+e^(x))

int(e^(x)dx)/(e^(x)-1)

Solve int_(-1)^(1)(e^(x)-e^(-x))dx

int_(0)^(1)x^2e^(2x)dx