Home
Class 12
MATHS
int0^1(dx)/(1+x+x^2)...

`int_0^1(dx)/(1+x+x^2)`

A

`(pi)/(sqrt(3))`

B

`(pi)/(3)`

C

`(pi)/(3sqrt(3))`

D

none of these

Text Solution

Verified by Experts

`I=int_(0)^(1)(dx)/({(x^(2)+x+(1)/(4))+(3)/(4)})=int_(0)^(1)(dx)/({(x+(1)/(2))^(2)+((sqrt(3))/(2))^(2)})=[(2)/(sqrt(3))tan^(-1).((x+(1)/(2)))/(((sqrt(3))/(2)))]_(0)^(1)=(pi)/(3sqrt(3))`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16D|17 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

int_0^1(dx)/(1-x^2)\

(i) int_0^1 (dx)/sqrt(1-x^2) (ii) int_0^1 (dx)/sqrt(1+x^2) (iii) a int_1^sqrt3 (dx)/(1+x^2) b int_0^1 (dx)/(1+x^2) (iv) int_0^(2//3) (dx)/(4+9x^2) (v) int_0^1 x/(x^2+1)dx (vi) int_2^3 x/(x^2+1) dx

int_0^1 dx/sqrt(1-x^2)

If P=int_0^oo(x^2)/(1+x^4)dx ; Q=int_0^oo(x dx)/(1+x^4)"and"R=int_0^oo(dx)/(1+x^4), then prove that :

int_0^1(x^2)/(1+x^2)dx=?

Evaluate int_0^1 x/(1+x^2) dx

Let I_1=int_0^1 (dx)/(1+x^(1/3)) and I_2=int_0^1 (dx)/(1+x^(1/4)) then 4I_1+3I_2=

Evaluate the following integral: int_0^1(1-x^2)/((1+x^2)^2)dx

If int_(0)^(1)(dx)/((1+x)sqrt(1-x^(2)))=(a)/(b) , then

int_(0)^(1)(dx)/(x^((1)/(2))(1-x)^((1)/(2)))