Home
Class 12
MATHS
int(0)^(sqrt(2))sqrt(2-x^(2))dx=?...

`int_(0)^(sqrt(2))sqrt(2-x^(2))dx=?`

A

`pi`

B

`2pi`

C

`(pi)/(2)`

D

none of these

Text Solution

AI Generated Solution

To solve the integral \( \int_{0}^{\sqrt{2}} \sqrt{2 - x^2} \, dx \), we can use a trigonometric substitution. Here’s a step-by-step solution: ### Step 1: Trigonometric Substitution We can use the substitution \( x = \sqrt{2} \sin \theta \). Then, the differential \( dx \) becomes: \[ dx = \sqrt{2} \cos \theta \, d\theta \] Next, we need to change the limits of integration. When \( x = 0 \), \( \theta = 0 \), and when \( x = \sqrt{2} \), \( \theta = \frac{\pi}{2} \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16D|17 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2)x^(2)sqrt(4-x^(2))dx=

int_(0)^(1)x^(2)sqrt(1-x^(2))dx=

Evaluate :int_(0)^(2)sqrt(4-x^(2))dx

int_(0)^(1/sqrt2)(dx)/(sqrt(1-x^(2)))

int_(0)^(a)x sqrt(a^(2)-x^(2))dx

int_(0)^(a)sqrt(a^(2)-x^(2))dx=

int_(0)^(sqrt(2))[x^(2)]dx

I=int_(0)^(2)x sqrt(4-x^(2))dx

int_(0)^(2//3)sqrt(4-9x^(2))dx=

int_(0)^(2) sqrt(2-x)dx .