Home
Class 12
MATHS
int(0)^(pi//2)(sqrt(cosx))/((sqrt(cosx)+...

`int_(0)^(pi//2)(sqrt(cosx))/((sqrt(cosx)+sqrt(sinx)))dx=?`

A

`(pi)/(2)`

B

`(pi)/(4)`

C

`pi`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} \, dx, \] we will use the property of definite integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] ### Step 1: Apply the property of definite integrals Here, we have \( a = 0 \) and \( b = \frac{\pi}{2} \). Thus, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos\left(\frac{\pi}{2} - x\right)}}{\sqrt{\cos\left(\frac{\pi}{2} - x\right)} + \sqrt{\sin\left(\frac{\pi}{2} - x\right)}} \, dx. \] ### Step 2: Simplify the expression Using the trigonometric identities, we know: \[ \cos\left(\frac{\pi}{2} - x\right) = \sin x \quad \text{and} \quad \sin\left(\frac{\pi}{2} - x\right) = \cos x. \] Thus, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx. \] ### Step 3: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} \, dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx \) Adding these two equations, we get: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} + \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \right) dx. \] ### Step 4: Simplify the sum The denominators are the same, so we can combine the numerators: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x} + \sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}} \, dx = \int_{0}^{\frac{\pi}{2}} 1 \, dx. \] ### Step 5: Evaluate the integral The integral of 1 from 0 to \(\frac{\pi}{2}\) is simply: \[ \int_{0}^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2}. \] ### Step 6: Solve for \( I \) Now we have: \[ 2I = \frac{\pi}{2}. \] Dividing both sides by 2 gives: \[ I = \frac{\pi}{4}. \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} \, dx = \frac{\pi}{4}. \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16D|17 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)sqrt(1+cosx)dx

int_(0)^(pi//2)(sqrt(sinx))/((sqrt(sinx)+sqrt(cosx)))dx=(pi)/(4)

If int_(pi//6)^(pi//3)(sqrt(sinx))/(sqrt(cosx)+sqrt(sinx))dx=(k)/(4) , then value of k equals

STATEMENT-1 : int_(-3)^(3)|x|dx=9 STATEMENT-2 : int_(0)^(1)tan^(-1)xdx=(pi)/(4)-lnsqrt(2) STATEMENT-3 : int_(0)^(pi//2)(sqrt(cosx))/(sqrt(sinx)+sqrt(cosx))dx=(pi)/(4)

int_(0)^(pi//2)(sinx)/(sqrt(1+cosx))dx

int_(pi//6)^(pi//3)(sqrt(sinx))/(sqrt(sinx)+sqrt(cosx))dx=(k)/(4) , then the value of k equals

int_0^(pi/2) sqrt(cosx)sinxdx

int_0^(pi/2) sqrt(sinx)/(sqrt(sinx)+sqrt(cosx))dx

int(cosx)/(sqrt(cos2x))dx=