Home
Class 12
MATHS
int(0)^(pi//2)(1)/((1+sqrt(cotx)))dx=?...

`int_(0)^(pi//2)(1)/((1+sqrt(cotx)))dx=?`

A

`0`

B

`(pi)/(4)`

C

`(pi)/(2)`

D

`pi`

Text Solution

AI Generated Solution

To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \sqrt{\cot x}} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integrand. Recall that \( \cot x = \frac{\cos x}{\sin x} \), so we can express the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \sqrt{\frac{\cos x}{\sin x}}} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16D|17 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(1)/(1+sqrt(tan x))dx=

int_(0)^(pi//2)(sinx)/(sqrt(1+cosx))dx

Evaluate the following : int_(pi//6)^(pi//3)(1)/(1+sqrt(cotx))dx

int_(pi/12)^(pi/2)(dx)/(1+sqrt(cotx))

int_(0)^(pi//2)(dx)/((1+sqrt(tanx)))=(pi)/(4)

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int _(0)^(pi//2) sqrt(1+ cos x dx)

int _(0) ^(pi//2) sqrt(1-cos x )" "dx=

int_(0)^(pi)(cos x)/(1+sqrt(sin x))dx=