Home
Class 12
MATHS
int(0)^(pi//2)(tanx)/((1+tanx))dx=?...

`int_(0)^(pi//2)(tanx)/((1+tanx))dx=?`

A

`0`

B

`1`

C

`(pi)/(4)`

D

`pi`

Text Solution

Verified by Experts

`I=int_(0)^(pi//2)(sinx)/((cosx+sinx))dx`.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16D|17 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(1)/((1+tanx))dx=?

int_(0)^(pi//2)(dx)/(1+tanx) is

The value of int_(0)^(-pi//4)(1+tanx)/(1-tanx)dx is

int_0^(pi//2)log(tanx)dx

Prove that int_(0)^(pi)(xtanx)/((secx+tanx))dx=pi((pi)/(2)-1) .

Evaluate the following : int_(0)^(pi//2)(1)/(1+sqrt(tanx))dx

int_(0)^(pi//2)(dx)/((1+sqrt(tanx)))=(pi)/(4)

int_(0)^(pi//2)(tanx)/(1+m^(2)tan^(2)x)\ dx

int((1+tanx)/(1-tanx))dx

int(dx)/((1-tanx))=?