Home
Class 12
MATHS
Let vec(a) and vec(b) be two nonzero vec...

Let `vec(a)` and `vec(b)` be two nonzero vector. Prove that
`vec(a) bot vec(b) hArr |vec(a)+vec(b)|=|vec(a)-vec(b)|`.

Text Solution

Verified by Experts

Let `vec(a) bot vec(b)`. Then, `(vec(a).vec(b))=0` ...(i)
Now, `|vec(a)+vec(b)|^(2)=(vec(a)+vec(b)).(vec(a)+vec(b))`
`=vec(a).vec(a)+vec(a).vec(b)+vec(b).vec(a)+vec(b).vec(b)`
`=|vec(a)|^(2)+|vec(b)|^(2) { :' vec(b).vec(b)=0 and vec(b).vec(a)=vec(a).vec(b)=0}`.
Also, `|vec(a)-vec(b)|^(2)=(vec(a)-vec(b)).(vec(a)-vec(b))`
`=vec(a).vec(a)-vec(a).vec(b)-vec(b).vec(a)+vec(b).vec(b)`
`= |vec(a)|^(2)+|vec(b)|^(2) { :' vec(a).vec(b)=0 and vec(b).vec(a)=vec(a).vec(b)=0}`
Thus, `|vec(a)+vec(b)|^(2)=|vec(a)-vec(b)|^(2)`, and therefore, `|vec(a)+vec(b)|=|vec(a)-vec(b)|`.
`:. vec(a) bot vec(b) implies |vec(a)+vec(b)|=|vec(a)-vec(b)|`.
Conversely, suppose that `|vec(a)+vec(b)|=|vec(a)-vec(b)|`. Then,
`|vec(a)+vec(b)|=|vec(a)-vec(b)|implies |vec(a)+vec(b)|^(2)=|vec(a)-vec(b)|^(2)`
`implies (vec(a)+vec(b)).(vec(a)+vec(b))=(vec(a)-vec(b)).(vec(a)-vec(b))`
`implies vec(a).vec(a)+vec(a).vec(b)+vec(b).vec(a)+vec(b).vec(b)`
`=vec(a).vec(a)-vec(a).vec(b)-vec(b).vec(a)+vec(b).vec(b)`
`implies 2(vec(a).vec(b)+vec(b).vec(a))=0`
`implies 4(vec(a).vec(b))=0" "[ :' vec(b).vec(a)=vec(a).vec(b)]`
`implies vec(a).vec(b)=0implies vec(a) bot vec(b)`.
Thus, `|vec(a)+vec(b)|=|vec(a)-vec(b)|implies vec(a) bot vec(b)`.
Hence, `|vec(a)+vec(b)|=|vec(a)-vec(b)| hArr vec(a) bot vec(b)`.
Promotional Banner

Topper's Solved these Questions

  • SCALAR, OR DOT, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 23|34 Videos
  • RELATIONS

    RS AGGARWAL|Exercise Objective Questions|22 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos

Similar Questions

Explore conceptually related problems

If vec(a) and vec(b) are two vectors then the value of (vec(a) + vec(b)) xx (vec(a) - vec(b)) is

If vec(A) and vec(B) are two non-zero vectors such that |vec(A) +vec(B)|=(|vec(A)-vec(B)|)/(2) and |vec(A)|=2|vec(B)| then the angle between vec(A) and vec(B) is :

If vec(A) and vec(B) are two non - zero vectors such that |vec(A)+vec(B)|=(|vec(A)-vec(B)|)/(2) and |vec(A)|=2|vec(B)| then the angle between vec(A) and vec(B) is :

Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec(b) + vec(c) = 0 and |vec(a)|=10, |vec(b)|=6 and |vec(c) |=14 . What is the angle between vec(a) and vec(b) ?

Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec(b) + vec(c) = 0 and |vec(a)|=10, |vec(b)|=6 and |vec(c) |=14 . What is vec(a). vec(b) + vec(b).vec(c)+ vec(c). vec(a) . equal to ?

If vec(a) and vec(b) are two unit vectors, then the vector (vec(a) + vec(b)) xx (vec(a) xx vec(b)) is parallel to

For any two vectors vec(a) and vec(b) consider the following statement : 1. |vec(a)+vec(b)|=|vec(a)-vec(b)|hArr vec(a), vec(b) are orthogonal. 2. |vec(a)+vec(b)|=|vec(a)|+|vec(b)|hArrvec(a), vec(b) are orthogonal. 3. |vec(a)+vec(b)|^(2)=|vec(a)|^(2)+|vec(b)|^(2)hArr vec(a),vec(b) are orthogonal. Which of the above statements is/are correct?

For any two vectors vec a and vec b write when |vec a+vec b|=|vec a-vec b| holds.

Let vec a and vec b be two unit vectors such that |vec a+vec b|=sqrt(3) if vec c=vec a+2vec b+3(vec aXvec b) then 2|vec c| is equal to

RS AGGARWAL-SCALAR, OR DOT, PRODUCT OF VECTORS-Exercise 23
  1. Let vec(a) and vec(b) be two nonzero vector. Prove that vec(a) bot v...

    Text Solution

    |

  2. Find vec(a).vec(b) when (i) vec(a)=hat(i)-2hat(j)+hat(k) and vec(b)=...

    Text Solution

    |

  3. Find the value of lambda for which vec(a) and vec(b) are perpendicular...

    Text Solution

    |

  4. (i) If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k)...

    Text Solution

    |

  5. If vec a= hat a= hat i-\ hat j+7 hat k and vec b=5 hat j-\ hat j+l...

    Text Solution

    |

  6. Show that the vectors vec a=1/7(2 hat i+3 hat j+6 hat k), vec b=1/7(3...

    Text Solution

    |

  7. Let vec(A)=4hat(i)+5hat(j)-hat(k), vec(b)=hat(i)-4hat(j)+5hat(k) and v...

    Text Solution

    |

  8. Let vec(a)=(2hat(i)+3hat(j)+2 hat(k)) and vec(b)=(hat(i)+2hat(j)+hat(k...

    Text Solution

    |

  9. Find the projection of (8hat(i)+hat(j)) in the direction of (hat(i)+2h...

    Text Solution

    |

  10. Write the projection of vector hat i+ hat j+ hat k along the vector ...

    Text Solution

    |

  11. (i) Find the projection of vec(a) on vec(b) if vec(a).vec(b)=8 and vec...

    Text Solution

    |

  12. Find the angle between the vectors vec(a) and vec(b), when (i) vec(a...

    Text Solution

    |

  13. If vec(a)=(hat(i)+2hat(j)-3hat(k)) and vec(b)=(3hat(i)-hat(j)+2hat(k))...

    Text Solution

    |

  14. if veca is a unit vector and (vecx-veca).(vecx+veca)=8 then |vecx|

    Text Solution

    |

  15. Find the angles which the vector vec(a)=3 hat(i)-6hat(j)+2hat(k) makes...

    Text Solution

    |

  16. Show that the vector hat i+ hat j+ hat k is equally inclined with the...

    Text Solution

    |

  17. Find a vector vec a of magnitude 5sqrt(2) making an angle pi/4 with x-...

    Text Solution

    |

  18. Find the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)), if vec(a)=...

    Text Solution

    |

  19. Express the vector vec(a)=(6hat(i)-3hat(j)-6hat(k)) as sum of two vect...

    Text Solution

    |

  20. Prove that ( -> a+ -> b)dot( -> a+ -> c)| -> a|^2+| -> b|^2 , if and o...

    Text Solution

    |

  21. If vec a+ vec b+ vec c=0,| vec a|=3,| vec b|=5,| vec c|=7, then find ...

    Text Solution

    |