Home
Class 12
MATHS
Show that the points, A, B and C having ...

Show that the points, A, B and C having position vectors `(2hat(i)-hat(j)+hat(k)), (hat(i)-3hat(j)-5hat(k))` and `(3hat(i)-4hat(j)-4hat(k))` respectively are the vertices of a rightangled triangle. Also, find the remaining angles of the triangle.

Text Solution

Verified by Experts

We have
`vec(AB)=`(p.v. of B)-(p.v. of A)
`=(-hat(i)-2hat(j)-6hat(k))`,
`vec(BC)=` (p.v. of C)-(p.v. of B)
`=)2hat(i)-hat(j)+hat(k))` and
`vec(CA)=` (p.v. of A)-(p.v. of C)`=(-hat(i)+3hat(j)+5hat(k))`.
Clearly, we have `vec(AB)+vec(BC)+vec(CA)=vec(0)`.
`:.` A, B and C are the vertices of a triangle.
Now, `vec(BC).vec(CA)=(2hat(i)-hat(j)+hat(k)).(-hat(i)+3hat(j)+5hat(k))=(-2-3+5)=0`
`:. vec(BC) bot vec(CA)` and therefore, `angleC=90^(@)`.
Now, `angleA` is the angle between `vec(AB)` and `vec(AC)`
`:. vec(AB).vec(AC)=|vec(AB)||vec(AC)| cos A implies cos A = ((vec(AB).vec(AC)))/(|vec(AB)||vec(AC)|)`
=((-hat(i)-2hat(j)-6hat(k)).(hat(i)-3hat(j)-5hat(k)))/({sqrt((-1)^(2)+(-2)^(2)+(-6)^(2))}.{sqrt(1^(2)+(-3)^(2)+(-5)^(2))})`
`[ :' vec(AB)=-vec(CA)]`
`=((-1+6+30))/(sqrt(41)xxsqrt(35))=35/(sqrt(41)xxsqrt(35))=sqrt(35)/sqrt(41)=sqrt(35/41)`
`implies A= cos^(-1) sqrt(35/41)`
Further, `angleB` is the angle between `vec(BC)` and `vec(BA)`
`:. vec(BC).vec(BA)=|vec(BC)||vec(BA)|cos B`
`implies cos B =((vec(BC).vec(BA)))/(|vec(BC)||vec(BA)|)`
`=((2hat(i)-hat(j)+hat(k)).(hat(i)+2hat(j)+6hat(k)))/({sqrt(2^(2)+(-1)^(2)+1^(2))}.{sqrt(1^(2)+2^(2)+6^(2))})`
`=((2-2+6))/(sqrt(6)xxsqrt(41))=6/(sqrt(6)xxsqrt(41))=sqrt(6)/sqrt(41)=sqrt(6/41)`
`implies B= cos^(-1) sqrt(6/41)`
`:. A=cos^(-1) sqrt(35/41), B= cos^(-1) sqrt(6/41)`, and `C=90^(@)`.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SCALAR, OR DOT, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 23|34 Videos
  • RELATIONS

    RS AGGARWAL|Exercise Objective Questions|22 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos

Similar Questions

Explore conceptually related problems

Show that the points A,B,C with position vectors 2hat i-hat j+hat k,hat i-3hat j-5hat k and 3hat i-4hat j-4hat k respectively,are the vertices of a right angled triangle.Also,find the remaining angles of the triangle.

Show that the points A,B,C with position vectors (3hat(i)- 2 hat(j)+ 4hat(k)),(hat(i) + hat(j) +hat(k)) and (-hat(i)+ 4 hat(j)- 2 hat(k)) respectively are collinear.

Knowledge Check

  • The value of a, for which the points A, B, C with position vectors 2hat(i)-hat(j)+hat(k),hat(i)-3hat(j)-5hat(k),ahat(i)-3hat(j)+hat(k) respectively are the vertices of a right angled triangle with C=(pi)/(2)are

    A
    1
    B
    2
    C
    -1
    D
    -2
  • Similar Questions

    Explore conceptually related problems

    Show that the points A,B and C with position vectors,vec a=3hat i-4hat j-4hat kvec b=2hat i-hat j+hat k and vec c=hat i-3hat j-5hat k respectively form the vertices of a right angled triangle.

    Show that the four points A, B, C and D with position vectors 4hat(i)+5hat(j)+hat(k), -(hat(j)+hat(k)),3hat(i)+9hat(j)+4hat(k) and 4(-hat(i)+hat(j)+hat(k)) respectively are coplanar.

    show that the points whose position vectors are (-2hat(i) +3hat(j) +5hat(k)) (hat(i)+2hat(j)+3hat(k)) " and " (7hat(i) -hat(k)) are collinear.

    The values of a for which the points A,B, and C with position vectors 2hat i-hat j+hat k,hat i-3hat j-5hat k, and ahat i-3hat j+hat k respectively,are the vertices of a right-angled triangle with C=(pi)/(2) are

    Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

    Show that the points A,B,C with position vectors 2hat ihat j+hat k,hat i35hat k and 3hat i4hat j4hat k respectively,are the vertices of a right-angled triangle.Hence find the area of the triangle.

    Show that the point A , B and C with position vectors vec a =3 hat i - 4 hat j -4 hat k = 2 hat i j + hat k and vec c = hat i - 3 hat j - 5 hat k , respectively from the vertices of a right angled triangle.