Home
Class 12
MATHS
Find the value of lambda for which vec(a...

Find the value of `lambda` for which `vec(a)` and `vec(b)` are perpendicular, where
(i) `vec(a)=2hat(i)+lambda hat(j)+hat(k)` and `vec(b)=(hat(i)-2hat(j)+3hat(k))`
(ii) `vec(a)=3hat(i)-hat(j)+4hat(k)` and `vec(b)=- lamnda hat(i)+3 hat(j)+3 hat(k)`
(iii) `vec(A)=2hat(i)+4hat(j)-hat(k)` and `vec(b)=3 hat(i)-2 hat(j)+lambda hat(k)`
(iv) `vec(a)=3 hat(i)+2 hat(j)-5 hat(k)` and `vec(b)=-5 hat(j)+lambda hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of `lambda` for which the vectors `vec(a)` and `vec(b)` are perpendicular, we need to use the property that two vectors are perpendicular if their dot product equals zero. Let's solve each part step by step. ### Part (i) Given: - `vec(a) = 2hat(i) + lambda hat(j) + hat(k)` - `vec(b) = hat(i) - 2hat(j) + 3hat(k)` 1. **Calculate the dot product**: \[ vec(a) \cdot vec(b) = (2hat(i) + lambda hat(j) + hat(k)) \cdot (hat(i) - 2hat(j) + 3hat(k)) \] \[ = 2(1) + lambda(-2) + 1(3) \] \[ = 2 - 2lambda + 3 \] \[ = 5 - 2lambda \] 2. **Set the dot product to zero**: \[ 5 - 2lambda = 0 \] 3. **Solve for `lambda`**: \[ 2lambda = 5 \implies lambda = \frac{5}{2} \] ### Part (ii) Given: - `vec(a) = 3hat(i) - hat(j) + 4hat(k)` - `vec(b) = -lambda hat(i) + 3hat(j) + 3hat(k)` 1. **Calculate the dot product**: \[ vec(a) \cdot vec(b) = (3hat(i) - hat(j) + 4hat(k)) \cdot (-lambda hat(i) + 3hat(j) + 3hat(k)) \] \[ = 3(-lambda) + (-1)(3) + 4(3) \] \[ = -3lambda - 3 + 12 \] \[ = -3lambda + 9 \] 2. **Set the dot product to zero**: \[ -3lambda + 9 = 0 \] 3. **Solve for `lambda`**: \[ -3lambda = -9 \implies lambda = 3 \] ### Part (iii) Given: - `vec(a) = 2hat(i) + 4hat(j) - hat(k)` - `vec(b) = 3hat(i) - 2hat(j) + lambda hat(k)` 1. **Calculate the dot product**: \[ vec(a) \cdot vec(b) = (2hat(i) + 4hat(j) - hat(k)) \cdot (3hat(i) - 2hat(j) + lambda hat(k)) \] \[ = 2(3) + 4(-2) + (-1)(lambda) \] \[ = 6 - 8 - lambda \] \[ = -2 - lambda \] 2. **Set the dot product to zero**: \[ -2 - lambda = 0 \] 3. **Solve for `lambda`**: \[ lambda = -2 \] ### Part (iv) Given: - `vec(a) = 3hat(i) + 2hat(j) - 5hat(k)` - `vec(b) = -5hat(j) + lambda hat(k)` 1. **Calculate the dot product**: \[ vec(a) \cdot vec(b) = (3hat(i) + 2hat(j) - 5hat(k)) \cdot (0hat(i) - 5hat(j) + lambda hat(k)) \] \[ = 3(0) + 2(-5) + (-5)(lambda) \] \[ = 0 - 10 - 5lambda \] \[ = -10 - 5lambda \] 2. **Set the dot product to zero**: \[ -10 - 5lambda = 0 \] 3. **Solve for `lambda`**: \[ -5lambda = 10 \implies lambda = -2 \] ### Summary of Results 1. For Part (i), \( \lambda = \frac{5}{2} \) 2. For Part (ii), \( \lambda = 3 \) 3. For Part (iii), \( \lambda = -2 \) 4. For Part (iv), \( \lambda = -2 \)
Promotional Banner

Topper's Solved these Questions

  • SCALAR, OR DOT, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 23|34 Videos
  • RELATIONS

    RS AGGARWAL|Exercise Objective Questions|22 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos

Similar Questions

Explore conceptually related problems

Find vec(A).vec(b) when (i) vec(a)=hat(i)-2hat(j)+hat(k) and vec(b)=3 hat(i)-4 hat(j)-2 hat(k) (ii) vec(a)=hat(i)+2hat(j)+3hat(k) and vec(b)=-2hat(j)+4hat(k) (iii) vec(a)=hat(i)-hat(j)+5hat(k) and vec(b)=3 hat(i)-2 hat(k)

Find the unit vectors perpendicular to both vec(a) and vec(b) when (i) vec(a) = 3 hat(i)+hat(j)-2 hat(k) and vec(b)= 2 hat(i) + 3 hat(j) - hat(k) (ii) vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b)= hat(i) +2hat(j) - hat(k) (iii) vec(a) = hat(i) + 3 hat(j) - 2 hat (k) and vec(b)= -hat(i) + 3 hat(k) (iv) vec(a) = 4 hat(i) + 2 hat(j)-hat(k) and vec(b) = hat(i) + 4 hat(j) - hat(k)

Find the value of lambda for which the vectors vec(a), vec(b), vec(c) are coplanar, where (i) vec(a)=(2hat(i)-hat(j)+hat(k)), vec(b) = (hat(i)+2hat(j)+3hat(k) ) and vec(c)=(3 hat(i)+lambda hat(j) + 5 hat (k)) (ii) vec(a)lambda hat(i)-10 hat(j)-5k^(2), vec(b) =-7hat(i)-5hat(j) and vec(c)= hat(i)--4hat(j)-3hat(k) (iii) vec(a)=hat(i)-hat(j)+hat(k), vec(b)= 2hat( i) + hat(j)-hat(k) and vec(c)= lambda hat(i) - hat(j) + lambda hat(k)

Find the angle between the vectors vec(a) and vec(b) , when (i) vec(a)=hat(i)-2hat(j)+3 hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) (ii) vec(a)=3 hat(i)+hat(j)+2hat(k) and vec(b)=2hat(i)-2hat(j)+4 hat(k) (iii) vec(a)=hat(i)-hat(j) and vec(b)=hat(j)+hat(k) .

Find the area of the parallelogram whose adjacent sides are represented by the vectors (i) vec(a)=hat(i) + 2 hat(j)+ 3 hat(k) and vec(b)=-3 hat(i)- 2 hat(j) + hat(k) (ii) vec(a)=(3 hat(i)+hat(j) + 4 hat(k)) and vec(b)= ( hat(i)- hat(j) + hat(k)) (iii) vec(a) = 2 hat(i)+ hat(j) +3 hat(k) and vec(b)= hat(i)-hat(j) (iv) vec(b)= 2 hat(i) and vec(b) = 3 hat(j).

Find ( vec (a) xxvec (b)) and |vec(a) xx vec (b)| ,when (i) vec(a) = hat(i)-hat(j)+ 2hat(k) and vec(b)= 2 hat(i)+3 hat(j)-4hat(k) (ii) vec(a)= 2hat (i)+hat(j)+ 3hat(k) and vec(b)= 3hat(i)+5 hat(j) - 2 hat(k) (iii) vec(a)=hat(i)- 7 hat(j)+ 7hat(k) and vec(b) = 3 hat(i)-2hat(j)+2 hat(k) (iv) vec(a)= 4hat(i)+ hat(j)- 2hat(k) and vec(b) = 3 hat(i)+hat(k) (v) vec(a) = 3 hat(i) + 4 hat(j) and vec(b) = hat(i)+hat(j)+hat(k)

If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and vec(c )=-3hat(i)+hat(j)+2hat(k) , find [vec(a)vec(b)vec(c )] .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find [vec(a)vec(b)vec(c)] , when (i) vec(a)=2hat(i)+hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c)=3hat(i)+hat(j)+2hat(k) (ii) vec(a)=2hat(i)-3hat(j)+4hat(k), vec(b)=hat(i)+2hat(j)-hat(k) and vec(c)=3hat(i)-hat(j)+2hat(k) (iii) vec(a) = 2 hat(i)-3hat(j), vec(b)=hat(i)+hat(j)-hat(k) and vec(c)=3hat(i)-hat(k)

If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k) , find |vec(a)-2 vec(b)| .

RS AGGARWAL-SCALAR, OR DOT, PRODUCT OF VECTORS-Exercise 23
  1. Find vec(a).vec(b) when (i) vec(a)=hat(i)-2hat(j)+hat(k) and vec(b)=...

    Text Solution

    |

  2. Find the value of lambda for which vec(a) and vec(b) are perpendicular...

    Text Solution

    |

  3. (i) If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k)...

    Text Solution

    |

  4. If vec a= hat a= hat i-\ hat j+7 hat k and vec b=5 hat j-\ hat j+l...

    Text Solution

    |

  5. Show that the vectors vec a=1/7(2 hat i+3 hat j+6 hat k), vec b=1/7(3...

    Text Solution

    |

  6. Let vec(A)=4hat(i)+5hat(j)-hat(k), vec(b)=hat(i)-4hat(j)+5hat(k) and v...

    Text Solution

    |

  7. Let vec(a)=(2hat(i)+3hat(j)+2 hat(k)) and vec(b)=(hat(i)+2hat(j)+hat(k...

    Text Solution

    |

  8. Find the projection of (8hat(i)+hat(j)) in the direction of (hat(i)+2h...

    Text Solution

    |

  9. Write the projection of vector hat i+ hat j+ hat k along the vector ...

    Text Solution

    |

  10. (i) Find the projection of vec(a) on vec(b) if vec(a).vec(b)=8 and vec...

    Text Solution

    |

  11. Find the angle between the vectors vec(a) and vec(b), when (i) vec(a...

    Text Solution

    |

  12. If vec(a)=(hat(i)+2hat(j)-3hat(k)) and vec(b)=(3hat(i)-hat(j)+2hat(k))...

    Text Solution

    |

  13. if veca is a unit vector and (vecx-veca).(vecx+veca)=8 then |vecx|

    Text Solution

    |

  14. Find the angles which the vector vec(a)=3 hat(i)-6hat(j)+2hat(k) makes...

    Text Solution

    |

  15. Show that the vector hat i+ hat j+ hat k is equally inclined with the...

    Text Solution

    |

  16. Find a vector vec a of magnitude 5sqrt(2) making an angle pi/4 with x-...

    Text Solution

    |

  17. Find the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)), if vec(a)=...

    Text Solution

    |

  18. Express the vector vec(a)=(6hat(i)-3hat(j)-6hat(k)) as sum of two vect...

    Text Solution

    |

  19. Prove that ( -> a+ -> b)dot( -> a+ -> c)| -> a|^2+| -> b|^2 , if and o...

    Text Solution

    |

  20. If vec a+ vec b+ vec c=0,| vec a|=3,| vec b|=5,| vec c|=7, then find ...

    Text Solution

    |