Home
Class 12
MATHS
Find the angle between (vec(a)+vec(b)) a...

Find the angle between `(vec(a)+vec(b))` and `(vec(a)-vec(b))`, if `vec(a)=(2 hat(i)-hat(j)+3hat(k))` and `vec(b)=(3hat(i)+hat(j)+2hat(k))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \( \vec{c} = \vec{a} + \vec{b} \) and \( \vec{d} = \vec{a} - \vec{b} \), we will follow these steps: ### Step 1: Define the vectors Given: \[ \vec{a} = 2\hat{i} - \hat{j} + 3\hat{k} \] \[ \vec{b} = 3\hat{i} + \hat{j} + 2\hat{k} \] ### Step 2: Calculate \( \vec{c} = \vec{a} + \vec{b} \) \[ \vec{c} = (2\hat{i} - \hat{j} + 3\hat{k}) + (3\hat{i} + \hat{j} + 2\hat{k}) \] Combine the components: \[ \vec{c} = (2 + 3)\hat{i} + (-1 + 1)\hat{j} + (3 + 2)\hat{k} \] \[ \vec{c} = 5\hat{i} + 0\hat{j} + 5\hat{k} = 5\hat{i} + 5\hat{k} \] ### Step 3: Calculate \( \vec{d} = \vec{a} - \vec{b} \) \[ \vec{d} = (2\hat{i} - \hat{j} + 3\hat{k}) - (3\hat{i} + \hat{j} + 2\hat{k}) \] Combine the components: \[ \vec{d} = (2 - 3)\hat{i} + (-1 - 1)\hat{j} + (3 - 2)\hat{k} \] \[ \vec{d} = -1\hat{i} - 2\hat{j} + 1\hat{k} \] ### Step 4: Find the dot product \( \vec{c} \cdot \vec{d} \) \[ \vec{c} \cdot \vec{d} = (5\hat{i} + 5\hat{k}) \cdot (-1\hat{i} - 2\hat{j} + 1\hat{k}) \] Calculating the dot product: \[ = 5(-1) + 0(-2) + 5(1) = -5 + 0 + 5 = 0 \] ### Step 5: Calculate the magnitudes of \( \vec{c} \) and \( \vec{d} \) \[ |\vec{c}| = \sqrt{(5)^2 + (0)^2 + (5)^2} = \sqrt{25 + 0 + 25} = \sqrt{50} = 5\sqrt{2} \] \[ |\vec{d}| = \sqrt{(-1)^2 + (-2)^2 + (1)^2} = \sqrt{1 + 4 + 1} = \sqrt{6} \] ### Step 6: Use the cosine formula to find the angle \( \theta \) Using the formula: \[ \cos \theta = \frac{\vec{c} \cdot \vec{d}}{|\vec{c}| |\vec{d}|} \] Substituting the values: \[ \cos \theta = \frac{0}{(5\sqrt{2})(\sqrt{6})} = 0 \] ### Step 7: Determine the angle \( \theta \) Since \( \cos \theta = 0 \): \[ \theta = \frac{\pi}{2} \text{ radians} \quad \text{or} \quad 90^\circ \] Thus, the angle between \( \vec{a} + \vec{b} \) and \( \vec{a} - \vec{b} \) is \( 90^\circ \). ---

To find the angle between the vectors \( \vec{c} = \vec{a} + \vec{b} \) and \( \vec{d} = \vec{a} - \vec{b} \), we will follow these steps: ### Step 1: Define the vectors Given: \[ \vec{a} = 2\hat{i} - \hat{j} + 3\hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR, OR DOT, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 23|34 Videos
  • RELATIONS

    RS AGGARWAL|Exercise Objective Questions|22 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos

Similar Questions

Explore conceptually related problems

Find |vec(a)xx vec(b)| , if vec(a)=2hat(i)+hat(j)+3hat(k) and vec(b)=3hat(i)+5hat(j)-2hat(k) .

Find the angle between the vectors vec(a) and vec(b) , when (i) vec(a)=hat(i)-2hat(j)+3 hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) (ii) vec(a)=3 hat(i)+hat(j)+2hat(k) and vec(b)=2hat(i)-2hat(j)+4 hat(k) (iii) vec(a)=hat(i)-hat(j) and vec(b)=hat(j)+hat(k) .

(i) If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k) , show that (vec(a)+vec(b)) is perpendicular to (vec(A)-vec(b)) . (ii) If vec(a)=(5hat(i)-hat(j)-3 hat(k)) and vec(b)=(hat(i)+3hat(j)-5hat(k)) then show that (vec(a)+vec(b)) and (vec(a)-vec(b)) are orthogonal.

Find ( vec (a) xxvec (b)) and |vec(a) xx vec (b)| ,when (i) vec(a) = hat(i)-hat(j)+ 2hat(k) and vec(b)= 2 hat(i)+3 hat(j)-4hat(k) (ii) vec(a)= 2hat (i)+hat(j)+ 3hat(k) and vec(b)= 3hat(i)+5 hat(j) - 2 hat(k) (iii) vec(a)=hat(i)- 7 hat(j)+ 7hat(k) and vec(b) = 3 hat(i)-2hat(j)+2 hat(k) (iv) vec(a)= 4hat(i)+ hat(j)- 2hat(k) and vec(b) = 3 hat(i)+hat(k) (v) vec(a) = 3 hat(i) + 4 hat(j) and vec(b) = hat(i)+hat(j)+hat(k)

Find [vec(a)vec(b)vec(c )] if vec(a)=vec(i)-2hat(j)+3hat(k), vec(b)=2hat(i)-3hat(j)+hat(k) and vec(c )=3hat(i)+hat(j)-2hat(k) .

Find vec(a).(vec(b)xx vec(c )) if : vec(a)=2hat(i)+hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c )=3hat(i)+hat(j)+2hat(k) .

verify that vec(a) xx (vec(b)+ vec(c))=(vec(a) xx vec(b))+(vec(a) xx vec(c)) , "when" (i) vec(a)= hat(i)- hat(j)-3 hat(k), vec(b)= 4 hat(i)-3 hat(j) + hat(k) and vec(c)= 2 hat(i) - hat(j) + 2 hat(k) (ii) vec(a)= 4 hat(i)-hat(j)+hat(k), vec(b)= hat(i)+hat(j)+ hat(k) and vec(c)= hat(i)- hat(j)+hat(k).

Find a unit vector in the direction of (vec(a)+vec(b)) , where : vec(a)=2hat(i)+2hat(j)-5hat(k) and vec(b)=2hat(i)+hat(j)+3hat(k) .

Find the unit vector in the direction of vec(a)-vec(b) , where : vec(a)=hat(i)+3hat(j)-hat(k), vec(b)=3hat(i)+2hat(j)+hat(k) .

Find the value of lambda for which the vectors vec(a), vec(b), vec(c) are coplanar, where (i) vec(a)=(2hat(i)-hat(j)+hat(k)), vec(b) = (hat(i)+2hat(j)+3hat(k) ) and vec(c)=(3 hat(i)+lambda hat(j) + 5 hat (k)) (ii) vec(a)lambda hat(i)-10 hat(j)-5k^(2), vec(b) =-7hat(i)-5hat(j) and vec(c)= hat(i)--4hat(j)-3hat(k) (iii) vec(a)=hat(i)-hat(j)+hat(k), vec(b)= 2hat( i) + hat(j)-hat(k) and vec(c)= lambda hat(i) - hat(j) + lambda hat(k)

RS AGGARWAL-SCALAR, OR DOT, PRODUCT OF VECTORS-Exercise 23
  1. Show that the vector hat i+ hat j+ hat k is equally inclined with the...

    Text Solution

    |

  2. Find a vector vec a of magnitude 5sqrt(2) making an angle pi/4 with x-...

    Text Solution

    |

  3. Find the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)), if vec(a)=...

    Text Solution

    |

  4. Express the vector vec(a)=(6hat(i)-3hat(j)-6hat(k)) as sum of two vect...

    Text Solution

    |

  5. Prove that ( -> a+ -> b)dot( -> a+ -> c)| -> a|^2+| -> b|^2 , if and o...

    Text Solution

    |

  6. If vec a+ vec b+ vec c=0,| vec a|=3,| vec b|=5,| vec c|=7, then find ...

    Text Solution

    |

  7. Find the angle between vec(a) and vec(b), when (i) |vec(a)|=2, |vec(...

    Text Solution

    |

  8. Find | -> a- -> b|, if two vector -> a and -> b are such that | -> a...

    Text Solution

    |

  9. Find | vec a|a n d\ | vec b| , if : ( vec a+ vec b)dot( vec a- vec b)=...

    Text Solution

    |

  10. If hat a\ a n d\ hat b are unit vectors inclined at an angle theta t...

    Text Solution

    |

  11. Dot product of a vector with hat i+ hat j-3 hat k , hat i+3 hat j-2 h...

    Text Solution

    |

  12. If vec(AB)=(3hat(i)-hat(j)+2hat(k)) and the coordinates of A are (0, -...

    Text Solution

    |

  13. If A(2, 3, 4), B(5, 4, -1), C(3, 6, 2) and D(1, 2, 0) be four points, ...

    Text Solution

    |

  14. Find the value of lambdadot If the vectors 2 hat i+lambda hat j+3 hat ...

    Text Solution

    |

  15. Show that the vectors vec a=3 hat i-2 hat j+ hat k ,\ vec b= hat i-3...

    Text Solution

    |

  16. Three vertices of a triangle are A(0, -1, -2), B(3, 1, 4) and C(5, 7, ...

    Text Solution

    |

  17. If the position vectors of the vertices a, B and C of a Triangle ABC b...

    Text Solution

    |

  18. If vec a and vec b are two non-collinear unit vectors such that |...

    Text Solution

    |

  19. If vec a ,\ vec b ,\ are two vectors such that | vec a+ vec b|=| ve...

    Text Solution

    |

  20. If vec a=3 hat i- hat j and vec b=2 hat i+hat j-3 hat k, then expres...

    Text Solution

    |