Home
Class 11
MATHS
Evaluate: " "(i)" "(i^(41)+(1)/(i^(71)...

Evaluate: `" "(i)" "(i^(41)+(1)/(i^(71)))" "(ii)" "(i^(53)+(1)/(i^(53)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems, we will evaluate the expressions step by step. ### Part (i): Evaluate \( i^{41} + \frac{1}{i^{71}} \) 1. **Finding \( i^{41} \)**: - The powers of \( i \) cycle every 4: - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) - To find \( i^{41} \), we calculate \( 41 \mod 4 \): \[ 41 \div 4 = 10 \quad \text{(remainder 1)} \] Thus, \( 41 \mod 4 = 1 \) and \( i^{41} = i^1 = i \). 2. **Finding \( i^{71} \)**: - Similarly, calculate \( 71 \mod 4 \): \[ 71 \div 4 = 17 \quad \text{(remainder 3)} \] Thus, \( 71 \mod 4 = 3 \) and \( i^{71} = i^3 = -i \). 3. **Calculating \( \frac{1}{i^{71}} \)**: - Since \( i^{71} = -i \): \[ \frac{1}{i^{71}} = \frac{1}{-i} = -\frac{1}{i} \] - To simplify \( -\frac{1}{i} \), we multiply the numerator and denominator by \( i \): \[ -\frac{1}{i} \cdot \frac{i}{i} = -\frac{i}{i^2} = -\frac{i}{-1} = i \] 4. **Combining the results**: - Now we have: \[ i^{41} + \frac{1}{i^{71}} = i + i = 2i \] ### Part (ii): Evaluate \( i^{53} + \frac{1}{i^{53}} \) 1. **Finding \( i^{53} \)**: - Calculate \( 53 \mod 4 \): \[ 53 \div 4 = 13 \quad \text{(remainder 1)} \] Thus, \( 53 \mod 4 = 1 \) and \( i^{53} = i^1 = i \). 2. **Calculating \( \frac{1}{i^{53}} \)**: - Since \( i^{53} = i \): \[ \frac{1}{i^{53}} = \frac{1}{i} \] - To simplify \( \frac{1}{i} \), we multiply the numerator and denominator by \( i \): \[ \frac{1}{i} \cdot \frac{i}{i} = \frac{i}{i^2} = \frac{i}{-1} = -i \] 3. **Combining the results**: - Now we have: \[ i^{53} + \frac{1}{i^{53}} = i - i = 0 \] ### Final Answers: - (i) \( i^{41} + \frac{1}{i^{71}} = 2i \) - (ii) \( i^{53} + \frac{1}{i^{53}} = 0 \)
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 5 B|28 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 5 C|12 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 5 G|28 Videos
  • COMBINATIONS

    RS AGGARWAL|Exercise Exercise 9D|18 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate: " "(i)" "i^(19)" "(ii)" "i^(62)" "(iii)" "i^(373)

Evaluate (i^(41)+(1)/(i^(71))) .

Evaluate: " "(i)" "i^(-50)" "(ii)" "i^(-9)" "(iii)" "i^(-131)

Evaluate (i) ┌1 (ii) ┌2

Simplify the following : (i) [i^(19) +(1)/(i^(25))]^(2) (ii) [i^(5)- (1)/(i^(3))]^(4)

Evaluate : i^(-71)

Evaluate the following : (i) i^(7) (ii) i^(51) (iii) (1)/(i) (iv) i^(-71) (v) (i^(37)+(1)/(i^(67)))

Evaluate : (i) i^(23)" "(ii) i^(998)" "(iii)i^(-998)" "(iv) i^(-71) (v) (sqrt(-1))^(91)" "(vi) (i^(37)xx i^(-61))" "(vii) i^(-1)

Evaluate the following: (i^(41)+i^((1)/(257)))^(9)

Evaluate the following (i) i^(9) (ii) i^(342) (iii) i^(998) (iv) i^(-63) (v) (i^(3)+(1)/(i^(3)))