Home
Class 11
MATHS
1 + i^(2) + i^(4) + i^(6) = 0....

`1 + i^(2) + i^(4) + i^(6) = 0`.

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 5 B|28 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 5 C|12 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 5 G|28 Videos
  • COMBINATIONS

    RS AGGARWAL|Exercise Exercise 9D|18 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos

Similar Questions

Explore conceptually related problems

Find the value of i^(2)+(-i)^(4)-i^(6) .

Find the value of ( i^2 + i^4 + i^6 + i^7 ) / ( 1 + i^2 + i^3 ) is ( a ) 1 - i ( b ) 1 + i ( c ) 2 - i ( d ) 2 + i

The value of i^(2)+i^(4)+i^(6)+i^(8)... upto (2n+1) terms,where i^(2)=-1, is equal to:

What is the value of 1+i^(2)+i^(4)+i^(6)+...+i^(100) where i=sqrt(-1)

Find the value of 1+i^(2)+i^(4)+i^(6)+i^(8)+...+i^(24)

Find the value of 1+i^(2)+i^(4)+i^(6)+i^(8)+...+i^(24)

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n)