Home
Class 11
MATHS
Find the multiplicative inverse of each ...

Find the multiplicative inverse of each of the following :
`(i)" "(1-sqrt(3)i)" "(ii)" "(2+5i)" "(iii)" "((2+3i))/((1+i))" "(iv)" "((1+i)(1+2i))/((1+3i))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the multiplicative inverse of the given complex numbers, we will follow a systematic approach for each case. The multiplicative inverse of a complex number \( z \) is given by \( \frac{1}{z} \). To simplify this, we will rationalize the denominator. ### (i) Find the multiplicative inverse of \( 1 - \sqrt{3}i \) 1. **Write the inverse**: \[ \frac{1}{1 - \sqrt{3}i} \] 2. **Rationalize the denominator**: Multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{1 \cdot (1 + \sqrt{3}i)}{(1 - \sqrt{3}i)(1 + \sqrt{3}i)} = \frac{1 + \sqrt{3}i}{1^2 - (\sqrt{3}i)^2} \] 3. **Calculate the denominator**: \[ 1^2 - (\sqrt{3}i)^2 = 1 - (-3) = 1 + 3 = 4 \] 4. **Final result**: \[ \frac{1 + \sqrt{3}i}{4} = \frac{1}{4} + \frac{\sqrt{3}}{4}i \] ### (ii) Find the multiplicative inverse of \( 2 + 5i \) 1. **Write the inverse**: \[ \frac{1}{2 + 5i} \] 2. **Rationalize the denominator**: \[ \frac{1 \cdot (2 - 5i)}{(2 + 5i)(2 - 5i)} = \frac{2 - 5i}{2^2 - (5i)^2} \] 3. **Calculate the denominator**: \[ 2^2 - (5i)^2 = 4 - (-25) = 4 + 25 = 29 \] 4. **Final result**: \[ \frac{2 - 5i}{29} = \frac{2}{29} - \frac{5}{29}i \] ### (iii) Find the multiplicative inverse of \( \frac{2 + 3i}{1 + i} \) 1. **Write the inverse**: \[ \frac{1 + i}{2 + 3i} \] 2. **Rationalize the denominator**: \[ \frac{(1 + i)(2 - 3i)}{(2 + 3i)(2 - 3i)} = \frac{(1 + i)(2 - 3i)}{2^2 - (3i)^2} \] 3. **Calculate the denominator**: \[ 2^2 - (3i)^2 = 4 - (-9) = 4 + 9 = 13 \] 4. **Expand the numerator**: \[ (1 + i)(2 - 3i) = 2 - 3i + 2i - 3i^2 = 2 - i + 3 = 5 - i \] 5. **Final result**: \[ \frac{5 - i}{13} = \frac{5}{13} - \frac{1}{13}i \] ### (iv) Find the multiplicative inverse of \( \frac{(1 + i)(1 + 2i)}{1 + 3i} \) 1. **Calculate the numerator**: \[ (1 + i)(1 + 2i) = 1 + 2i + i + 2i^2 = 1 + 3i - 2 = -1 + 3i \] 2. **Write the inverse**: \[ \frac{1 + 3i}{-1 + 3i} \] 3. **Rationalize the denominator**: \[ \frac{(1 + 3i)(-1 - 3i)}{(-1 + 3i)(-1 - 3i)} = \frac{(-1 - 3i + 3i - 9i^2)}{1 - 9} = \frac{-1 + 9}{1 - 9} = \frac{8 - 0i}{-8} = -1 \] 4. **Final result**: \[ -1 \] ### Summary of Results 1. \( \frac{1}{4} + \frac{\sqrt{3}}{4}i \) 2. \( \frac{2}{29} - \frac{5}{29}i \) 3. \( \frac{5}{13} - \frac{1}{13}i \) 4. \( -1 \)

To find the multiplicative inverse of the given complex numbers, we will follow a systematic approach for each case. The multiplicative inverse of a complex number \( z \) is given by \( \frac{1}{z} \). To simplify this, we will rationalize the denominator. ### (i) Find the multiplicative inverse of \( 1 - \sqrt{3}i \) 1. **Write the inverse**: \[ \frac{1}{1 - \sqrt{3}i} \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 5 C|12 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 5 D|24 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 5 A|15 Videos
  • COMBINATIONS

    RS AGGARWAL|Exercise Exercise 9D|18 Videos
  • CONDITIONAL IDENTITIES INVOLVING THE ANGLES OF A TRIANGLE

    RS AGGARWAL|Exercise EXERCISE 16|12 Videos

Similar Questions

Explore conceptually related problems

Find the multiplicative inverse of each of the following : (i)" "sqrt(5)+3i" "(ii)" "4-3i" "(iii)" "(3i-1)^(2)" "(iv)" "-i

Find the multiplicative inverse of the following: (i) 3+4i (ii) (5-7i)^(2) .

Find the multiplicative inverse of the following complex numbers: (i) 4-3i (ii) 3+2i

Find the cube of each of the following (i) (-7) (ii) 1 2/3 (iii) 2.5 (iv) 0.05

Find the multiplicative inverse of (i) -(1)/(8)" " (ii) 3(1)/(3)

Write down the conjugate of each of the following : (i)" "(-5+sqrt(-1))" "(ii)" "(-6-sqrt(-3))" "(iii)" "i^(3)" "(iv)" "(4+5i)^(2)

Find the modulus of the following :(1-i sqrt(3))/(2+2i)

Write down the modulus of: (i)" "4+sqrt(-3)" "(ii)" "2-5i" "(iii)-i" "(iv)" "(-1+3i)^(2)

Conjugate of ((1+i)(1+2i))/((1+3i))

Express each of the following in the form (a + ib): (i)" "(i)/((1+i))" "(ii)" "(-1+sqrt(3)i)^(-1)" "(iii)" "(5+sqrt(2)i)/(1=sqrt(2)i)

RS AGGARWAL-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-EXERCISE 5 B
  1. Find the conjugate of each of the following : {:((i),(-5-2i),(ii),(1...

    Text Solution

    |

  2. Find the modulus of each of the following : {:((i),(3+sqrt(-5)),(ii)...

    Text Solution

    |

  3. Find the multiplicative inverse of each of the following : (i)" "(1-...

    Text Solution

    |

  4. If ((1-i)/(1+i))^(100)=a+i b ,\ fin d\ (a , b)

    Text Solution

    |

  5. If ((1+i)/(1-i))^3-((1-i)/(1+i))^3=x+i y ,\ fin d\ (x , y)

    Text Solution

    |

  6. If x + i y =(a+i b)/(a-i b),prove that x^2+y^2=1.

    Text Solution

    |

  7. If a+i b=(c+i)/(c-i) , where c is real, prove that:a^2+b^2=1a n d b/a=...

    Text Solution

    |

  8. Show that (1-i)^(n)(1-(1)/(i))^(n)=2^(n) for all n in N

    Text Solution

    |

  9. What is the smallest positive integer n for which (1+i)^(2n)=(1-i)^(2n...

    Text Solution

    |

  10. Prove that: x^4=4=(x+1+i)(x+1-i)(x-1+i(x-1-i)dot)

    Text Solution

    |

  11. if a = costheta +i sin theta , prove that (1+a)/(1-a) = cot(theta/2)i

    Text Solution

    |

  12. If z1=2-i ,\ z2=1+i , find |(z1+z2+1)/(z1-z2+i)|

    Text Solution

    |

  13. Find the real values of x and y for which : {:((i),(1-i)x+(1+i)y=1 -...

    Text Solution

    |

  14. Find the real numbers x\ a n d\ y , if (x-i y)(3+5i) is the conjugate ...

    Text Solution

    |

  15. Find real values of xa n dy for which the complex numbers -3+i x^2ya n...

    Text Solution

    |

  16. If z=2-3i show that z^2=4z+13=0 and hence find the value of 4z^3-3z^2+...

    Text Solution

    |

  17. if (1+i)z=(1-i)barz then z is

    Text Solution

    |

  18. If ((z-1)/(z+1)) is purely an imaginary number and z ne -1 then find t...

    Text Solution

    |

  19. Solve the system of equations R e(z^2)=0,\ |z|=2

    Text Solution

    |

  20. Find the complex number z for which |z| = z + 1 + 2i.

    Text Solution

    |