Home
Class 12
MATHS
If overset(to)(a),overset(to)(b),overset...

If `overset(to)(a),overset(to)(b),overset(to)(c ),overset(to)(d)` are four distinct vectors satisfying the conditions `overset(to)(a)xxoverset(to)(b)=overset(to)(c )xx overset(to)(d) " and " overset(to)(a)xxoverset(to)(c ) = overset(to)(b)xx overset(to)(d)` then prove that `, overset(to)(a).overset(to)(b)+overset(to)(c ). overset(to)(d) ne overset(to)(a). overset(to)(c)+overset(to)(b).overset(to)(d)`.

Text Solution

Verified by Experts

Given `vec(a) xx vec(b) xx vec(d) " and " vec(a) xx vec( c) = vec(b) xx vec(d)`
`rArr vec(a) xx vec(b) - vec(a) xx vec( c) = vec( c) xx vec(d) - vec(b) xx vec(d)`
`rArr vec(a) xx (vec(b) - vec( c)) = (vec(c )- vec(b)) xx vec(d)`
`rArr vec(a) xx (vec(b) -vec(c )) -(vec(c )-vec(b)) xx vec(d) =0`
`rArr vec(a) xx (vec(b) -vec(c )) - vec(d) xx (vec(b)-vec(c )) =0`
`rArr (vec(a) - vec(d)) xx (vec(b)-vec(c )) =0 rArr (vec(a) -vec(d))||(vec(b)-vec(c ))`
`:. (vec(a) xx vec(d)) .(vec(b) - vec(c )) ne 0`
`rArr vec(a) "." vec(b) = vec(d) ". " vec(c ) ne vec(d) ". " vec(b) + vec(a) ". " vec(c )`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Vector Triple Product (Objective Questions I)|9 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Vector Triple Product (Objective Questions II)|1 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Vector Product of Two Vectors (Objective Questions I) (Fill in the Blanks)|3 Videos
  • TRIGONOMETRICAL RATIOS AND IDENTITIES

    IIT JEE PREVIOUS YEAR|Exercise HEIGHT AND DISTANCE|10 Videos

Similar Questions

Explore conceptually related problems

If overset(to)(a) , overset(to)(b) , overset(to)(c ) " and " overset(to)(d) are the unit vectors such that (overset(to)(a)xx overset(to)(b)). (overset(to)(c )xx overset(to)(d)) =1 " and " overset(to)(a), overset(to)(c ) = .(1)/(2) , then

If the vectors overset(to)(b), overset(to)(c ) , overset(to)(d) are not coplanar then prove than the vectors (overset(to)(a) xx overset(to)(b)) xx (overset(to)(c ) xx overset(to)(d)) + (overset(to)(a) xx overset(to)(c )) xx (overset(to)(d) xx overset(to)(b)) +(overset(to)(a) xx overset(to)(d)) xx (overset(to)(b) xx overset(to)( c)) is parallel to overset(to)(a)

For any three vectors overset(to)(a), overset(to)(b) " and " overset(to)(C ) (overset(to)(a) - overset(to)(b)). {(overset(to)(b)-overset(to)(c))xx(overset(to)(c)-overset(to)(a))} = 2overset(to)(a).(overset(to)(b)xx overset(to)(c))

The scalar overset(to)(A) .[(overset(to)(B) xx overset(to)( C)) xx (overset(to)(A) + overset(to)(B) + overset(to)( C))] equals

If vectors overset(to)(a) , overset(to)(b) , overset(to)( C) are coplanar then show that |{:(overset(to)(a),,overset(to)(b),,overset(to)(c )),(overset(to)(a)"."overset(to)(a),,overset(to)(a)"."overset(to)(b),,overset(to)(a)"."overset(to)(c )),(overset(to)(b)"."overset(to)(a),,overset(to)(b)"."overset(to)(b),,overset(to)(b)"." overset(to)(c )):}|

If overset(to)(a) , overset(to)(b) " and " overset(to)(c ) are three non- coplanar vectors then (overset(to)(a) + overset(to)(b) + overset(to)(c )) . [( overset(to)(a) + overset(to)(b)) xx (overset(to)(a) + overset(to)(c ))] equals

if overset(to)(a), overset(to)(b) " and " overset(to)(c ) are unit vectors satisfying |overset(to)(a)-overset(to)(b)|^(2)+|overset(to)(b)-overset(to)(c)|^(2)+|overset(to)(c)-overset(to)(a)|^(2)=9 |2overset(to)(a) +5overset(to)(b)+5overset(to)(c)| is equal to

If overset(to)(X) "." overset(to)(A) =0, overset(to)(X) "." overset(to)(B) =0, overset(to)(X) "." overset(to)(C ) =0 for some non-zero vector overset(to)(X) " then " [overset(to)(A) overset(to)(B) overset(to)(C )]=0

If overset(to)(A), overset(to)(B), overset(to)(C ) three non-coplanar vectors then (overset(to)(A) ,(overset(to)(B)xxoverset(to)(C)))/((overset(to)(C)xx overset(to)(A)). overset(to)(B))+ (overset(to)(B).(overset(to)(A) xx overset(to)(C)))/(overset(to)(C).(overset(to)(A)xx overset(to)(B)))=.........