Home
Class 12
CHEMISTRY
A radioactive element has a half-life of...

A radioactive element has a half-life of 20 minutes. How much time should elapse before the element is reduced to `(1)/(8)th` of the original mass

A

40 minutes

B

60 minutes

C

80 minutes

D

160 minutes

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of how much time should elapse before a radioactive element is reduced to \( \frac{1}{8} \) of its original mass, we can follow these steps: ### Step-by-Step Solution: 1. **Understand Half-Life**: The half-life of a radioactive element is the time it takes for half of the substance to decay. In this case, the half-life is given as 20 minutes. 2. **Determine the Number of Half-Lives**: We need to find out how many half-lives it takes for the substance to reduce to \( \frac{1}{8} \) of its original mass. - After 1 half-life (20 minutes), the mass will be \( \frac{1}{2} \) of the original mass. - After 2 half-lives (40 minutes), the mass will be \( \frac{1}{4} \) of the original mass. - After 3 half-lives (60 minutes), the mass will be \( \frac{1}{8} \) of the original mass. 3. **Calculate the Total Time**: Since it takes 3 half-lives to reach \( \frac{1}{8} \) of the original mass, we multiply the number of half-lives by the duration of each half-life: \[ \text{Total Time} = 3 \times \text{Half-life} = 3 \times 20 \text{ minutes} = 60 \text{ minutes} \] 4. **Conclusion**: Therefore, the time that should elapse before the element is reduced to \( \frac{1}{8} \) of its original mass is 60 minutes. ### Final Answer: The time that should elapse is **60 minutes**. ---

To solve the problem of how much time should elapse before a radioactive element is reduced to \( \frac{1}{8} \) of its original mass, we can follow these steps: ### Step-by-Step Solution: 1. **Understand Half-Life**: The half-life of a radioactive element is the time it takes for half of the substance to decay. In this case, the half-life is given as 20 minutes. 2. **Determine the Number of Half-Lives**: We need to find out how many half-lives it takes for the substance to reduce to \( \frac{1}{8} \) of its original mass. - After 1 half-life (20 minutes), the mass will be \( \frac{1}{2} \) of the original mass. ...
Promotional Banner

Topper's Solved these Questions

  • NUCLEAR CHEMISTRY

    ERRORLESS |Exercise Ordinary Thinking (Artificial transmutation )|59 Videos
  • NUCLEAR CHEMISTRY

    ERRORLESS |Exercise Ordinary Thinking (Isotopes-Isotones and Nuclear isomers)|34 Videos
  • NUCLEAR CHEMISTRY

    ERRORLESS |Exercise Ordinary Thinking (Causes of radioactivity and Group displacement law)|66 Videos
  • NITROGEN CONTAINING COMPOUNDS

    ERRORLESS |Exercise JEE (ADVANCED) 2018 MORE THAN ONE CHOICE CORRECT ANSWER|1 Videos
  • ORES, MINERALS AND METALLURGICAL EXTRACTION

    ERRORLESS |Exercise JEE ANSWER TPYE QUESTION (JEE Advanced) 2018) Numeric answer type question|1 Videos

Similar Questions

Explore conceptually related problems

A radioactive element has half-life period of 30 days. How much of it will be left after 90 days?

A radioactive element has half life period of 30 days. How much of it will be left after 90 days?

A radioactive element has a half life of one day. After three days the amount of the element left will be :

A certain radioactive element has a half-life of 20 years . If we have a block with 10 g of the element in it, after how

A radioactive element with mass 8 gm and haslf life 100 second after 5 minute will reduce to -

A radioactive sample has a half-life of 20 years. The time at which the activity of the sample will reduce to 10% of its initial value is

The half-life period of a radioactive element is 1.4 xx 10^(10) years. Calculate the time in which the activity of the element is reduced to 90% of its original value.

ERRORLESS -NUCLEAR CHEMISTRY -Ordinary Thinking (Rate of decay and Half - life)
  1. Half-life is the time in which 50% of radioactive element disintegrate...

    Text Solution

    |

  2. The value of one mincrocurie = .... disintegrations/second

    Text Solution

    |

  3. A radioactive element has a half-life of 20 minutes. How much time sho...

    Text Solution

    |

  4. A radioactive isotope has a half-life of 10 day. If today there are 12...

    Text Solution

    |

  5. The half-life of Co^(60) is 7 years. If one g of it decays, the amount...

    Text Solution

    |

  6. Half-life of a radioactive substance is 120 days. After 480 days, 4 g ...

    Text Solution

    |

  7. 75% of a first-order reaction was completed in 32 minutes, when was 50...

    Text Solution

    |

  8. A sample of rock from moon contains equal number of atoms of uranium a...

    Text Solution

    |

  9. The half lives of two radioactive nuclides A and B are 1 and 2 min. re...

    Text Solution

    |

  10. If 12g of a sample is taken, then 6g of a sample decays in 1 hr. Find...

    Text Solution

    |

  11. When a radioactive substances is subjected to a vacuum, the rate of di...

    Text Solution

    |

  12. Radioactive decay is a

    Text Solution

    |

  13. If 2.0g of a radioactive isotope has a half-life of 20 hr, the half-li...

    Text Solution

    |

  14. Radioactive lead .(82)Pb^(201) has a half-life of 8 hours. Starting fr...

    Text Solution

    |

  15. If the amount of radioactive substance is increased three times, the n...

    Text Solution

    |

  16. Half life of radioactive element is 100 yrs. The time in which it disi...

    Text Solution

    |

  17. The initial mass of a radioactive element is 40g. How many grams of it...

    Text Solution

    |

  18. The half-life period of a radioactive substance is 8 years. After 16 y...

    Text Solution

    |

  19. The half-life of .(38)^(90)Sr is 20 years. If its sample having initia...

    Text Solution

    |

  20. A wood piece is 11460 years old. What is the fraction of .^(14)C activ...

    Text Solution

    |