Home
Class 11
MATHS
Find the values of (i) " sin "405...

Find the values of
`(i) " sin "405^(@) " " (ii) " sec " (-1470^(@)) " "(iii) " tan " (-300^(@))`
`(iv) " cot " (585^(@)) " "(v) " cosec " (-750^(@)) " "(vi) " cos " (-2220^(@))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the values of the given trigonometric functions, we will simplify each angle using periodic properties of trigonometric functions. ### Step-by-Step Solution: **(i) Find \( \sin 405^\circ \)** 1. **Reduce the angle**: \[ 405^\circ = 360^\circ + 45^\circ \] This means \( \sin 405^\circ = \sin(360^\circ + 45^\circ) \). 2. **Use the periodic property**: \[ \sin(360^\circ + \theta) = \sin \theta \] Therefore, \[ \sin 405^\circ = \sin 45^\circ \] 3. **Find the value**: \[ \sin 45^\circ = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \] **Final Answer**: \( \sin 405^\circ = \frac{\sqrt{2}}{2} \) --- **(ii) Find \( \sec(-1470^\circ) \)** 1. **Reduce the angle**: \[ -1470^\circ = -1440^\circ - 30^\circ \] Since \( -1440^\circ \) is equivalent to \( 0^\circ \) (as it completes 4 full cycles of 360°), we have: \[ \sec(-1470^\circ) = \sec(-30^\circ) \] 2. **Use the property of secant**: \[ \sec(-\theta) = \sec \theta \] Therefore, \[ \sec(-30^\circ) = \sec(30^\circ) \] 3. **Find the value**: \[ \sec(30^\circ) = \frac{1}{\cos(30^\circ)} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3} \] **Final Answer**: \( \sec(-1470^\circ) = \frac{2\sqrt{3}}{3} \) --- **(iii) Find \( \tan(-300^\circ) \)** 1. **Use the property of tangent**: \[ \tan(-\theta) = -\tan(\theta) \] Therefore, \[ \tan(-300^\circ) = -\tan(300^\circ) \] 2. **Reduce the angle**: \[ 300^\circ = 360^\circ - 60^\circ \] So, \[ \tan(300^\circ) = \tan(-60^\circ) = -\tan(60^\circ) \] 3. **Find the value**: \[ \tan(60^\circ) = \sqrt{3} \] Thus, \[ \tan(-300^\circ) = -(-\sqrt{3}) = \sqrt{3} \] **Final Answer**: \( \tan(-300^\circ) = \sqrt{3} \) --- **(iv) Find \( \cot(585^\circ) \)** 1. **Reduce the angle**: \[ 585^\circ = 540^\circ + 45^\circ \] Therefore, \[ \cot(585^\circ) = \cot(540^\circ + 45^\circ) \] 2. **Use the periodic property**: \[ \cot(540^\circ + \theta) = \cot \theta \] Thus, \[ \cot(585^\circ) = \cot(45^\circ) \] 3. **Find the value**: \[ \cot(45^\circ) = 1 \] **Final Answer**: \( \cot(585^\circ) = 1 \) --- **(v) Find \( \csc(-750^\circ) \)** 1. **Reduce the angle**: \[ -750^\circ = -720^\circ - 30^\circ \] Since \( -720^\circ \) is equivalent to \( 0^\circ \), we have: \[ \csc(-750^\circ) = \csc(-30^\circ) \] 2. **Use the property of cosecant**: \[ \csc(-\theta) = -\csc(\theta) \] Therefore, \[ \csc(-30^\circ) = -\csc(30^\circ) \] 3. **Find the value**: \[ \csc(30^\circ) = \frac{1}{\sin(30^\circ)} = \frac{1}{\frac{1}{2}} = 2 \] Thus, \[ \csc(-750^\circ) = -2 \] **Final Answer**: \( \csc(-750^\circ) = -2 \) --- **(vi) Find \( \cos(-2220^\circ) \)** 1. **Reduce the angle**: \[ -2220^\circ = -2160^\circ - 60^\circ \] Since \( -2160^\circ \) is equivalent to \( 0^\circ \), we have: \[ \cos(-2220^\circ) = \cos(-60^\circ) \] 2. **Use the property of cosine**: \[ \cos(-\theta) = \cos(\theta) \] Therefore, \[ \cos(-60^\circ) = \cos(60^\circ) \] 3. **Find the value**: \[ \cos(60^\circ) = \frac{1}{2} \] **Final Answer**: \( \cos(-2220^\circ) = \frac{1}{2} \) ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15B)|20 Videos
  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15C)|27 Videos
  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15E)|10 Videos
  • THREE-DIMENSIONAL GEOMETRY

    RS AGGARWAL|Exercise EXERCISE 26 C|13 Videos
  • TRIGONOMETRIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE|21 Videos

Similar Questions

Explore conceptually related problems

Find the value of (i) " sin " ((31pi)/(3)) " (ii) " cos " ((17pi)/(2)) " " (iii) " tan " ((-25pi)/(3)) (iv) " cot " ((13pi)/(4)) " " (v) " sec " ((-25pi)/(3)) " " (vi) " cosec " ((-41pi)/(4))

Find the value of (i) cos 480^(@) " " (ii) sin 1230^(@) " "(iii) cot (-135^(@)) (iv) "cosec "(-1410^(@))" "(v) cos (-870^(@)) " "(vi) tan 330^(@)

Find the value of (i) sin (765^(@)) (ii) cosec (-1110^(@)) (iii) cot (-600^(@))

Calculate the value of (i) sin 15^(@) " "(ii) cos 15^(@)" "(iii) tan 15^(@) (iv) sin 75^(@) " "(v) cos 75^(@) " "(vi) tan 75^(@)

Find the value of (i) cos(-30^(@)) " " (ii) sin 120^(@) " " (iii) sin135^(@) " " (iv) cos 120^(@)" " (v) sin270^(@) " " (vi) cos270^(@)

Find the value of (i) cos(-60^(@)) " " (ii) tan(210^(@))" " (iii) sin (300^(@))" " (iv) cos(120^(@))

Find the value of: (i) cos 210^(@) (ii) "sin" 225^(@) (iii) "tan" 330^(@) (iv) cot(-315^(@)) (v) "sec"(11pi)/(4)

Find the values of : (i) tan (-30^(@)) (ii) sin 120^(@) (iii) sin 135^(@) (iv) cos 150^(@) (v) sin 270^(@) (vi) cos 270^(@)

Find the values of: (i) tan (-30^(@)) (ii) sin 120^(@) (iii) sin 135^(@) (iv) cos 150^(@) (v) sin 270^(@) (vi) cos 270^(@)