Home
Class 12
MATHS
Find the unit vectors perpendicular to t...

Find the unit vectors perpendicular to the plane of the vectors
`vec(a) = 2 hat(i) - 6 hat(j)- 3 hat(k)` and ` vec(b)= 4 hat(i) + 3 hat(j) - hat(k).`

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vectors perpendicular to the plane of the vectors \(\vec{a} = 2\hat{i} - 6\hat{j} - 3\hat{k}\) and \(\vec{b} = 4\hat{i} + 3\hat{j} - \hat{k}\), we will follow these steps: ### Step 1: Calculate the Cross Product \(\vec{a} \times \vec{b}\) The cross product of two vectors \(\vec{a}\) and \(\vec{b}\) can be calculated using the determinant of a matrix formed by the unit vectors and the components of the vectors: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -6 & -3 \\ 4 & 3 & -1 \end{vmatrix} \] ### Step 2: Evaluate the Determinant Calculating the determinant, we have: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} -6 & -3 \\ 3 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -3 \\ 4 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -6 \\ 4 & 3 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \(\hat{i}\): \[ \begin{vmatrix} -6 & -3 \\ 3 & -1 \end{vmatrix} = (-6)(-1) - (-3)(3) = 6 + 9 = 15 \] 2. For \(\hat{j}\): \[ \begin{vmatrix} 2 & -3 \\ 4 & -1 \end{vmatrix} = (2)(-1) - (-3)(4) = -2 + 12 = 10 \] 3. For \(\hat{k}\): \[ \begin{vmatrix} 2 & -6 \\ 4 & 3 \end{vmatrix} = (2)(3) - (-6)(4) = 6 + 24 = 30 \] Putting it all together, we have: \[ \vec{a} \times \vec{b} = 15\hat{i} - 10\hat{j} + 30\hat{k} \] ### Step 3: Find the Magnitude of the Cross Product Now, we need to find the magnitude of \(\vec{a} \times \vec{b}\): \[ |\vec{a} \times \vec{b}| = \sqrt{(15)^2 + (-10)^2 + (30)^2} = \sqrt{225 + 100 + 900} = \sqrt{1225} = 35 \] ### Step 4: Find the Unit Vector The unit vector perpendicular to the plane formed by \(\vec{a}\) and \(\vec{b}\) is given by: \[ \hat{n} = \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} = \frac{15\hat{i} - 10\hat{j} + 30\hat{k}}{35} \] This simplifies to: \[ \hat{n} = \frac{15}{35}\hat{i} - \frac{10}{35}\hat{j} + \frac{30}{35}\hat{k} = \frac{3}{7}\hat{i} - \frac{2}{7}\hat{j} + \frac{6}{7}\hat{k} \] ### Step 5: Consider the Negative Unit Vector Since the question asks for unit vectors perpendicular to the plane, we also consider the negative of the unit vector: \[ -\hat{n} = -\left(\frac{3}{7}\hat{i} - \frac{2}{7}\hat{j} + \frac{6}{7}\hat{k}\right) = -\frac{3}{7}\hat{i} + \frac{2}{7}\hat{j} - \frac{6}{7}\hat{k} \] ### Final Answer Thus, the unit vectors perpendicular to the plane of the vectors \(\vec{a}\) and \(\vec{b}\) are: \[ \hat{n} = \frac{3}{7}\hat{i} - \frac{2}{7}\hat{j} + \frac{6}{7}\hat{k} \quad \text{and} \quad -\hat{n} = -\frac{3}{7}\hat{i} + \frac{2}{7}\hat{j} - \frac{6}{7}\hat{k} \]

To find the unit vectors perpendicular to the plane of the vectors \(\vec{a} = 2\hat{i} - 6\hat{j} - 3\hat{k}\) and \(\vec{b} = 4\hat{i} + 3\hat{j} - \hat{k}\), we will follow these steps: ### Step 1: Calculate the Cross Product \(\vec{a} \times \vec{b}\) The cross product of two vectors \(\vec{a}\) and \(\vec{b}\) can be calculated using the determinant of a matrix formed by the unit vectors and the components of the vectors: \[ \vec{a} \times \vec{b} = \begin{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    RS AGGARWAL|Exercise Exercise 9C|9 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Objective Questions|73 Videos

Similar Questions

Explore conceptually related problems

Find a unit vector perpendicular to each one of the vectors vec(a) = 4 hat(i) - hat (j) + 3hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) .

Find a unit vector perpendicular to each one of the vectors vec(a)= ( 4 hat(i) - hat(j)+ 3 hat(k)) and vec(b)=(2hat(i) + 2 hat(j)- hat(k)).

Find the unit vectors perpendicular to both vec(a) and vec(b) when (i) vec(a) = 3 hat(i)+hat(j)-2 hat(k) and vec(b)= 2 hat(i) + 3 hat(j) - hat(k) (ii) vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b)= hat(i) +2hat(j) - hat(k) (iii) vec(a) = hat(i) + 3 hat(j) - 2 hat (k) and vec(b)= -hat(i) + 3 hat(k) (iv) vec(a) = 4 hat(i) + 2 hat(j)-hat(k) and vec(b) = hat(i) + 4 hat(j) - hat(k)

The unit vector parallel to the resultant of the vectors vec(A) = hat(i) + 2 hat(j) - hat(k) and vec(B) = 2 hat(i) + 4 hat(j) - hat(k) is

Find a vector of magnitude 6 which is perpendicular to both the vectors vec(a)= 4 hat(i)-hat(j) + 3 hat(k) and vec(b) = -2 hat(i) + hat(j)- 2 hat(k).

Find a vector whose magnitude is 3 units and which is perpendicular to each of the vectors vec(a)=3 hat(i)+hat(j)-4 hat(k) and vec(b)=6 hat(i)+5 hat(j)-2 hat(k) .

Find the sine of the angle between the vectors vec(a) =(2 hat(i) - hat(j) + 3 hat(k)) and vec(b) = (hat(i) + 3 hat(j) + 2 hat(k)).

Find the unit vector in the direction of the sum of the vectors : vec(a) = 2hat(i)-hat(j)+2hat(k) and vec(b)=-hat(i)+hat(j)+3hat(k) .

Find the angle between the vectors : vec(a)=hat(i)+hat(j)-hat(k) " and " vec(b)=hat(i)-hat(j)+hat(k)

Find a unit vector perpendicular to the lane containing the vectors vec a=2hat i+hat j+hat k and vec b=hat i+2hat j+hat k

RS AGGARWAL-CROSS,OR VECTOR, PRODUCT OF VECTORS-Exercise 24
  1. Find the value of : (i) (hat(i) xxhat(j))*hat (k) + hat(i)* hat(j) ...

    Text Solution

    |

  2. Find the unit vectors perpendicular to both vec(a) and vec(b) when ...

    Text Solution

    |

  3. Find the unit vectors perpendicular to the plane of the vectors vec(...

    Text Solution

    |

  4. Find a vector of magnitude 6 which is perpendicular to both the vector...

    Text Solution

    |

  5. Find a unit vector perpendicular to each of the vectors ( -> a+ -> ...

    Text Solution

    |

  6. Find the angle between two vectors vec(a) and vec(b) with magnitudes 1...

    Text Solution

    |

  7. Let vec a= hat i- hat j ,\ vec b=3 hat j- hat k and vec c=7 hat i- h...

    Text Solution

    |

  8. If vec(a)=(4hat(i)+ 5 hat(j) - hat(k)),vec(b)=(hat(i)-4 hat(j)+ 5 hat(...

    Text Solution

    |

  9. Prove that |vec(a) xx vec(b)|=(vec(a)*vec(b)) tan theta," where " the...

    Text Solution

    |

  10. Write the value of p for which vec a=3 hat i+2 hat j+9 hat k\ a n d\ ...

    Text Solution

    |

  11. verify thatvec(a) xx (vec(b)+ vec(c))=(vec(a) xx vec(b))+(vec(a) xx ve...

    Text Solution

    |

  12. Find the area of the parallelogram whose adjacent sides are represente...

    Text Solution

    |

  13. Find the area of the parallelogram whose diagonals are represented by...

    Text Solution

    |

  14. Find the area of the trinagle whose two adjacent sides are determined ...

    Text Solution

    |

  15. Using vectors, find the area of Delta ABC whose vertices are (i) A...

    Text Solution

    |

  16. Using vector method, show that the given points A,B,C are collinear: ...

    Text Solution

    |

  17. Show that the points A,B,C with position vectors (3hat(i)- 2 hat(j)+ 4...

    Text Solution

    |

  18. Show that the points having position vectors vec(a), vec(b),(vec(c)=3 ...

    Text Solution

    |

  19. Show that the points having position vectors (-2vec(a) + 3 vec(b)+5vec...

    Text Solution

    |

  20. Find a unit vector perpendicular to the plane ABC, where the coordi...

    Text Solution

    |