Home
Class 12
MATHS
If vec(a)=(4hat(i)+ 5 hat(j) - hat(k)),v...

If `vec(a)=(4hat(i)+ 5 hat(j) - hat(k)),vec(b)=(hat(i)-4 hat(j)+ 5 hat(k))`, and`vec(c)=(3 hat(i)+ hat(j)-hat(k))` find a vector `vec(d)` which is perpendicular to both `vec(a)` and `vec(b)` and for which `vec(c )*vec(d)=21.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find a vector \( \vec{d} \) that is perpendicular to both vectors \( \vec{a} \) and \( \vec{b} \), and also satisfies the condition \( \vec{c} \cdot \vec{d} = 21 \). ### Step 1: Find the Cross Product \( \vec{a} \times \vec{b} \) The first step is to calculate the cross product \( \vec{a} \times \vec{b} \), which will give us a vector that is perpendicular to both \( \vec{a} \) and \( \vec{b} \). Given: \[ \vec{a} = 4\hat{i} + 5\hat{j} - \hat{k} \] \[ \vec{b} = \hat{i} - 4\hat{j} + 5\hat{k} \] We can use the determinant method to find the cross product: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 5 & -1 \\ 1 & -4 & 5 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 5 & -1 \\ -4 & 5 \end{vmatrix} - \hat{j} \begin{vmatrix} 4 & -1 \\ 1 & 5 \end{vmatrix} + \hat{k} \begin{vmatrix} 4 & 5 \\ 1 & -4 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 5 & -1 \\ -4 & 5 \end{vmatrix} = (5)(5) - (-1)(-4) = 25 - 4 = 21 \) 2. \( \begin{vmatrix} 4 & -1 \\ 1 & 5 \end{vmatrix} = (4)(5) - (-1)(1) = 20 + 1 = 21 \) 3. \( \begin{vmatrix} 4 & 5 \\ 1 & -4 \end{vmatrix} = (4)(-4) - (5)(1) = -16 - 5 = -21 \) Putting it all together: \[ \vec{a} \times \vec{b} = 21\hat{i} - 21\hat{j} - 21\hat{k} \] ### Step 2: Express \( \vec{d} \) Since \( \vec{d} \) is perpendicular to both \( \vec{a} \) and \( \vec{b} \), we can express \( \vec{d} \) as: \[ \vec{d} = \lambda (21\hat{i} - 21\hat{j} - 21\hat{k}) = 21\lambda (\hat{i} - \hat{j} - \hat{k}) \] ### Step 3: Use the Dot Product Condition Now, we need to satisfy the condition \( \vec{c} \cdot \vec{d} = 21 \). Given: \[ \vec{c} = 3\hat{i} + \hat{j} - \hat{k} \] Calculating the dot product: \[ \vec{c} \cdot \vec{d} = (3\hat{i} + \hat{j} - \hat{k}) \cdot (21\lambda (\hat{i} - \hat{j} - \hat{k})) \] \[ = 21\lambda (3 \cdot 1 + 1 \cdot (-1) + (-1) \cdot (-1)) = 21\lambda (3 - 1 + 1) = 21\lambda \cdot 3 = 63\lambda \] Setting this equal to 21: \[ 63\lambda = 21 \] \[ \lambda = \frac{21}{63} = \frac{1}{3} \] ### Step 4: Find \( \vec{d} \) Substituting \( \lambda \) back into the expression for \( \vec{d} \): \[ \vec{d} = 21 \cdot \frac{1}{3} (\hat{i} - \hat{j} - \hat{k}) = 7(\hat{i} - \hat{j} - \hat{k}) \] ### Final Answer Thus, the vector \( \vec{d} \) is: \[ \vec{d} = 7\hat{i} - 7\hat{j} - 7\hat{k} \] ---
Promotional Banner

Topper's Solved these Questions

  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    RS AGGARWAL|Exercise Exercise 9C|9 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Objective Questions|73 Videos

Similar Questions

Explore conceptually related problems

Let vec(A)=4hat(i)+5hat(j)-hat(k), vec(b)=hat(i)-4hat(j)+5hat(k) and vec(c) =3hat(i)+hat(j)-hat(k) . Find a vector vec(d) which is perpendicular to both vec(a) and vec(b) , and is such that vec(d). Vec(c)=21 .

Let vec(a) = (hat(i) + 4 hat(j) + 2 hat(k)), vec(b)= ( 3 hat(i)- 2 hat(j)+7 hat(k)) and vec(c) = ( 2 hat(i)- hat(j) + 4 hat(k))." find a vector" vec(d)" which is perpendicular to both "vec(a) and vec(b)" such that " vec(c). vec(d)= 18.

If vec(a)=3hat(i)+hat(j)-4hat(k), vec(b)=6hat(i)+5hat(j)-2hat(k) and |vec(c )|=3 , find the vector vec(c ) , which is perpendicular to both vec(a) and vec(b) .

If vec(a)=(2hat(i)-hat(j)+hat(k)), vec(b)=(hat(i)-3hat(j)-5hat(k)) and vec(c)=(3hat(i)-4hat(j)-hat(k)) , find [vec(a)vec(b)vec(c)] and interpret the result.

If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and vec(c )=-3hat(i)+hat(j)+2hat(k) , find [vec(a)vec(b)vec(c )] .

Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) and vec(b) then x equals

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

If vec(a) = 2 hat(i) + 2 hat(j) + hat(k) , vec(b) = - hat(i) + hat(j) + 2 hat(k) and vec ( c) = 3 hat(i) + hat(j) such that vec(a) + lambda hat (b) is perpendicular to vec( c) , find lambda .

Let vec a= hat i+4 hat j+2 hat k ,\ vec b=3 hat i-2 hat j+7 hat k\ a n d\ vec c=2 hat i- hat j+4 hat kdot\ find a vector vec d which is perpendicular to both vec a and vec b and vec c vec d=15.

If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k) , then show that (vec(a)+vec(b)) is perpendicular to (vec(a)-vec(b)) .

RS AGGARWAL-CROSS,OR VECTOR, PRODUCT OF VECTORS-Exercise 24
  1. Find a vector of magnitude 6 which is perpendicular to both the vector...

    Text Solution

    |

  2. Find a unit vector perpendicular to each of the vectors ( -> a+ -> ...

    Text Solution

    |

  3. Find the angle between two vectors vec(a) and vec(b) with magnitudes 1...

    Text Solution

    |

  4. Let vec a= hat i- hat j ,\ vec b=3 hat j- hat k and vec c=7 hat i- h...

    Text Solution

    |

  5. If vec(a)=(4hat(i)+ 5 hat(j) - hat(k)),vec(b)=(hat(i)-4 hat(j)+ 5 hat(...

    Text Solution

    |

  6. Prove that |vec(a) xx vec(b)|=(vec(a)*vec(b)) tan theta," where " the...

    Text Solution

    |

  7. Write the value of p for which vec a=3 hat i+2 hat j+9 hat k\ a n d\ ...

    Text Solution

    |

  8. verify thatvec(a) xx (vec(b)+ vec(c))=(vec(a) xx vec(b))+(vec(a) xx ve...

    Text Solution

    |

  9. Find the area of the parallelogram whose adjacent sides are represente...

    Text Solution

    |

  10. Find the area of the parallelogram whose diagonals are represented by...

    Text Solution

    |

  11. Find the area of the trinagle whose two adjacent sides are determined ...

    Text Solution

    |

  12. Using vectors, find the area of Delta ABC whose vertices are (i) A...

    Text Solution

    |

  13. Using vector method, show that the given points A,B,C are collinear: ...

    Text Solution

    |

  14. Show that the points A,B,C with position vectors (3hat(i)- 2 hat(j)+ 4...

    Text Solution

    |

  15. Show that the points having position vectors vec(a), vec(b),(vec(c)=3 ...

    Text Solution

    |

  16. Show that the points having position vectors (-2vec(a) + 3 vec(b)+5vec...

    Text Solution

    |

  17. Find a unit vector perpendicular to the plane ABC, where the coordi...

    Text Solution

    |

  18. If vec(a)= ( hat(i)- 2hat(j) + 3hat(k)) and vec(b)=(hat(i)-3hat(k)) ...

    Text Solution

    |

  19. If | vec a|=2,|b|=5 and | vec ax vec b|=8, find vec adot vec bdot

    Text Solution

    |

  20. If |vec(a)| = 2, |vec(b)|= 7 and (vec(a) xx vec(b))=(3 hat(i) + 2 hat(...

    Text Solution

    |