Home
Class 12
MATHS
If f(x)=((x^2+5x+3)/(x^2+x+2))^x then li...

If `f(x)=((x^2+5x+3)/(x^2+x+2))^x` then `lim_(xrarroo)f(x)` is equal to

A

`e^4`

B

`e^3`

C

`e^2`

D

`24`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} f(x) \) where \( f(x) = \left(\frac{x^2 + 5x + 3}{x^2 + x + 2}\right)^x \), we will follow these steps: ### Step 1: Rewrite the function We start with the function: \[ f(x) = \left(\frac{x^2 + 5x + 3}{x^2 + x + 2}\right)^x \] ### Step 2: Simplify the fraction inside the limit As \( x \) approaches infinity, we can factor out \( x^2 \) from both the numerator and the denominator: \[ f(x) = \left(\frac{x^2(1 + \frac{5}{x} + \frac{3}{x^2})}{x^2(1 + \frac{1}{x} + \frac{2}{x^2})}\right)^x = \left(\frac{1 + \frac{5}{x} + \frac{3}{x^2}}{1 + \frac{1}{x} + \frac{2}{x^2}}\right)^x \] ### Step 3: Evaluate the limit of the fraction Now, we take the limit of the fraction as \( x \) approaches infinity: \[ \lim_{x \to \infty} \frac{1 + \frac{5}{x} + \frac{3}{x^2}}{1 + \frac{1}{x} + \frac{2}{x^2}} = \frac{1 + 0 + 0}{1 + 0 + 0} = 1 \] ### Step 4: Identify the indeterminate form Since we have \( f(x) \) approaching \( 1^x \) as \( x \to \infty \), this is an indeterminate form \( 1^\infty \). ### Step 5: Apply the exponential limit To resolve the indeterminate form, we use the property: \[ \lim_{x \to a} f(x)^g(x) = e^{\lim_{x \to a} g(x) \cdot (f(x) - 1)} \] where \( g(x) = x \) and \( f(x) = \frac{x^2 + 5x + 3}{x^2 + x + 2} \). ### Step 6: Find \( f(x) - 1 \) We need to find: \[ f(x) - 1 = \frac{x^2 + 5x + 3}{x^2 + x + 2} - 1 = \frac{x^2 + 5x + 3 - (x^2 + x + 2)}{x^2 + x + 2} = \frac{4x + 1}{x^2 + x + 2} \] ### Step 7: Multiply by \( g(x) \) Now we multiply by \( g(x) = x \): \[ g(x) \cdot (f(x) - 1) = x \cdot \frac{4x + 1}{x^2 + x + 2} = \frac{4x^2 + x}{x^2 + x + 2} \] ### Step 8: Find the limit of \( g(x) \cdot (f(x) - 1) \) Now, we take the limit as \( x \to \infty \): \[ \lim_{x \to \infty} \frac{4x^2 + x}{x^2 + x + 2} = \lim_{x \to \infty} \frac{4 + \frac{1}{x}}{1 + \frac{1}{x} + \frac{2}{x^2}} = \frac{4 + 0}{1 + 0 + 0} = 4 \] ### Step 9: Apply the exponential function Finally, we can substitute back into the exponential limit: \[ \lim_{x \to \infty} f(x) = e^{\lim_{x \to \infty} g(x) \cdot (f(x) - 1)} = e^4 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to \infty} f(x) = e^4 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sqrt((x+sinx)/(x-cosx) ,then lim_(xrarroo) f(x) , is

If the function f(x) satisfies lim_(x to 1) (f(x)-2)/(x^(2)-1)=pi , then lim_(x to 1)f(x) is equal to

lim_(xrarroo) (2x)/(1+4x)

If f(x)={(3x-1),x>=1,(2x+3),x =2} then lim_(x rarr2)f(g(x))=

if f(x)={{:(2+x,xge0),(2-x,xlt0):} then lim_(x to 0) f(f(x)) is equal to

f(x)={x^(2)+4,x 2 and g(x)={x^(2),x 2 then lim_(x rarr2)f(x)g(x) equals

lim_(xrarroo) ((x+2)/(x+1))^(x+3) is equal to

Lim_(xrarroo)(x/(x+2))^x