Home
Class 12
MATHS
lim(xrarroo) ((x+2)/(x+1))^(x+3) is equa...

`lim_(xrarroo) ((x+2)/(x+1))^(x+3)` is equal to

A

1

B

e

C

`e^2`

D

`e^3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \left(\frac{x+2}{x+1}\right)^{x+3} \), we can follow these steps: ### Step 1: Rewrite the expression We start by rewriting the expression inside the limit: \[ \frac{x+2}{x+1} = \frac{x(1 + \frac{2}{x})}{x(1 + \frac{1}{x})} = \frac{1 + \frac{2}{x}}{1 + \frac{1}{x}} \] Thus, the limit can be rewritten as: \[ \lim_{x \to \infty} \left(\frac{1 + \frac{2}{x}}{1 + \frac{1}{x}}\right)^{x+3} \] ### Step 2: Analyze the limit As \( x \to \infty \), both \( \frac{2}{x} \) and \( \frac{1}{x} \) approach 0. Therefore: \[ \frac{1 + \frac{2}{x}}{1 + \frac{1}{x}} \to \frac{1 + 0}{1 + 0} = 1 \] This leads us to an indeterminate form \( 1^{\infty} \). ### Step 3: Apply the exponential limit We can use the property of limits for indeterminate forms: \[ \lim_{x \to \infty} f(x)^{g(x)} = e^{\lim_{x \to \infty} g(x) \cdot (f(x) - 1)} \] Here, let: - \( f(x) = \frac{1 + \frac{2}{x}}{1 + \frac{1}{x}} \) - \( g(x) = x + 3 \) ### Step 4: Calculate \( f(x) - 1 \) Now we need to find \( f(x) - 1 \): \[ f(x) - 1 = \frac{1 + \frac{2}{x}}{1 + \frac{1}{x}} - 1 = \frac{(1 + \frac{2}{x}) - (1 + \frac{1}{x})}{1 + \frac{1}{x}} = \frac{\frac{2}{x} - \frac{1}{x}}{1 + \frac{1}{x}} = \frac{\frac{1}{x}}{1 + \frac{1}{x}} = \frac{1}{x(1 + \frac{1}{x})} \] ### Step 5: Substitute into the limit Now we substitute \( f(x) - 1 \) into the limit: \[ \lim_{x \to \infty} (x + 3) \cdot \left(\frac{1}{x(1 + \frac{1}{x})}\right) = \lim_{x \to \infty} \frac{x + 3}{x(1 + \frac{1}{x})} \] This simplifies to: \[ \lim_{x \to \infty} \frac{1 + \frac{3}{x}}{1 + \frac{1}{x}} = \frac{1 + 0}{1 + 0} = 1 \] ### Step 6: Final limit calculation Now we have: \[ \lim_{x \to \infty} g(x) \cdot (f(x) - 1) = 1 \] Thus: \[ \lim_{x \to \infty} \left(\frac{x+2}{x+1}\right)^{x+3} = e^1 = e \] ### Conclusion The final result is: \[ \lim_{x \to \infty} \left(\frac{x+2}{x+1}\right)^{x+3} = e \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)((x-3)/(x+2))^(x) is equal to

Lim_(xrarroo)((x+1)/(x+2))^(x+3)

lim_(xrarroo) (sinx)/(x)=?

lim_(xrarroo) (cosx)/(x)=?

lim_(xrarroo) (2x)/(1+4x)

(lim_(xto oo) ((x+3)/(x+1))^(x+1) is equal to

The value of lim_(xrarroo)((lnx)^(2))/(2+3x^(2)) is equal to

Lim_(xrarroo)(x/(x+2))^x

The value of lim_(xrarroo) ((x+3)/(x-1))^(x+1) is

The value of lim_(xrarroo) ((x-1)/(x+1))^(x) , is