Home
Class 12
MATHS
If f(a) =2, f'(a)=1, g(a) =-1 , g' (a)=2...

If `f(a) =2, f'(a)=1, g(a) =-1 , g' (a)=2`, then the value of `lim_(xrarr a) (g(x)f(a)-g(a)f(x))/(x-a)`, is

A

`-5`

B

`1//5`

C

5

D

`-1//5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by \[ \lim_{x \to a} \frac{g(x)f(a) - g(a)f(x)}{x - a}, \] we can follow these steps: ### Step 1: Substitute the known values We know that \( f(a) = 2 \), \( g(a) = -1 \), \( f'(a) = 1 \), and \( g'(a) = 2 \). Let's substitute these values into the limit expression. ### Step 2: Evaluate the limit directly Substituting \( x = a \) directly into the limit gives us: \[ g(a)f(a) - g(a)f(a) = -1 \cdot 2 - (-1) \cdot 2 = -2 + 2 = 0. \] The denominator \( x - a \) also approaches \( 0 \) as \( x \to a \). Thus, we have a \( \frac{0}{0} \) indeterminate form. ### Step 3: Apply L'Hôpital's Rule Since we have a \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the derivative of the denominator separately. ### Step 4: Differentiate the numerator and denominator The numerator is \( g(x)f(a) - g(a)f(x) \). Differentiating it with respect to \( x \): \[ \frac{d}{dx}[g(x)f(a) - g(a)f(x)] = g'(x)f(a) - g(a)f'(x). \] The denominator \( x - a \) differentiates to \( 1 \). ### Step 5: Substitute \( x = a \) again Now we substitute \( x = a \) into the derivatives: \[ \lim_{x \to a} \left( g'(x)f(a) - g(a)f'(x) \right) = g'(a)f(a) - g(a)f'(a). \] Substituting the known values: \[ g'(a) = 2, \quad f(a) = 2, \quad g(a) = -1, \quad f'(a) = 1. \] So we have: \[ 2 \cdot 2 - (-1) \cdot 1 = 4 + 1 = 5. \] ### Final Answer Thus, the value of the limit is \[ \boxed{5}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Exercise|99 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

If (a)=2,f'(a)=1,g(a)=-1,g'(a)=2f(a)=2,f'(a)=1,g(a)=-1,g'(a)=2 then the value of lim_(x rarr a)(g(x)f(a)-g(a)f(x))/(x-a) is (a) -5 (b) (1)/(5)(c)5(d) none of these

If f(a)=2,g(a)=-1,f'(a)=1, g'(a)=2 then the value of lim_(x->0) (f(x).g(a)-f(a).g(x))/(x-a)= (a) 5 (b) -5 (c) -6 (d) non of these

f(a)=2,f'(a)=1,g(a)=-1,g'(a)=-2 then lim_(x rarr oo)(g(x)f(a)-g(a)f(x))/(x-a), is

If f(1) =g(1)=2 , then lim_(xrarr1) (f(1)g(x)-f(x)g(1)-f(1)+g(1))/(f(x)-g(x)) is equal to

If f(x)=x^(2)g (x) and g(1)=6, g'(x) 3 , find the value of f' (1).

If f and g are differentiable at a in R such that f(a)=g(a)=0 and g'(a)!=0 then show that lim_(x rarr a)(f(x))/(g(x))=(f'(a))/(g'(a))

OBJECTIVE RD SHARMA-LIMITS-Chapter Test
  1. Let < an > be a sequence such that lim(x->oo)an=0. Then lim(n->oo)(a1...

    Text Solution

    |

  2. Let lt an gt be a sequence such that a1=1 and an+1 =cos an, n gt 1 . ...

    Text Solution

    |

  3. If f(a) =2, f'(a)=1, g(a) =-1 , g' (a)=2, then the value of lim(xrarr ...

    Text Solution

    |

  4. If f(9)=9,f^(prime)(9)=4,t h e n("lim")(nvecoo)(sqrt(f(x)-3))/(sqrt(x-...

    Text Solution

    |

  5. If Al=(x-ai)/(|x-ai|)30, i=1,2,..., n and if a1 lt a2 lt a3lt ..... lt...

    Text Solution

    |

  6. lim(x -> oo) x^n / e^x = 0, (n is an integer) for

    Text Solution

    |

  7. lim(xrarr0) (x)/(tan^-1x) is equal to

    Text Solution

    |

  8. If f(x) =x , x<0 and f(x)=1 , x = 0, and f(x)=x^2,x>0 then lim(x->0) ...

    Text Solution

    |

  9. lim(xrarroo) sqrt((x+sinx)/(x-cos x))=

    Text Solution

    |

  10. Evaluate: ("lim")(xvecoo)(1+1/(a+b x))^(c+dx),w h e r ea , b , c ,a n ...

    Text Solution

    |

  11. If f'(2)=2, f''(2) =1, then lim(xrarr2)(2x^2-4f'(x))/(x-2), is

    Text Solution

    |

  12. lim(xrarr0) (e^(tanx)-e^x)/(tanx-x)=

    Text Solution

    |

  13. The value of lim(xrarr2^-) {x+(x-[x])^2}, is

    Text Solution

    |

  14. lim(xto0) ((e^x+e^-x-2)/(x^2))^(1//x^2) is equal to

    Text Solution

    |

  15. The value of lim(x->oo)(pi/2-tan^(- 1)x)^(1/x^2), is

    Text Solution

    |

  16. The value of lim(x->a) (sinx/sina)^(1/(x-a))=

    Text Solution

    |

  17. The value of lim(xrarroo)((x^2 +2x+3)/(2x^2+x+5))^((3x+2)/(3x+2)), is

    Text Solution

    |

  18. Evaluate: lim(x->oo) { ((a1)^(1/x)+(a2)^(1/x)+.... +(an)^(1/x))/n}^(n...

    Text Solution

    |

  19. The value of lim(xrarr0) ((sinx)/(x))^((sinx)/(x-sinx)), is

    Text Solution

    |

  20. lim(x->1)[(x^3+2x^2+x+1)/(x^2+2x+3)]^((1-cos(x-1))/(x-1)^2)

    Text Solution

    |