Home
Class 12
MATHS
lim(xrarroo) sqrt((x+sinx)/(x-cos x))=...

`lim_(xrarroo) sqrt((x+sinx)/(x-cos x))=`

A

0

B

1

C

-1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \sqrt{\frac{x + \sin x}{x - \cos x}} \), we will follow these steps: ### Step 1: Rewrite the limit We start with the expression inside the limit: \[ \lim_{x \to \infty} \sqrt{\frac{x + \sin x}{x - \cos x}} \] ### Step 2: Divide numerator and denominator by \( x \) To simplify the expression, we divide both the numerator and the denominator by \( x \): \[ = \lim_{x \to \infty} \sqrt{\frac{\frac{x}{x} + \frac{\sin x}{x}}{\frac{x}{x} - \frac{\cos x}{x}}} \] This simplifies to: \[ = \lim_{x \to \infty} \sqrt{\frac{1 + \frac{\sin x}{x}}{1 - \frac{\cos x}{x}}} \] ### Step 3: Evaluate the limits of \( \frac{\sin x}{x} \) and \( \frac{\cos x}{x} \) As \( x \to \infty \): - \( \frac{\sin x}{x} \to 0 \) - \( \frac{\cos x}{x} \to 0 \) ### Step 4: Substitute the limits into the expression Substituting these limits back into our expression gives: \[ = \sqrt{\frac{1 + 0}{1 - 0}} = \sqrt{\frac{1}{1}} = \sqrt{1} = 1 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to \infty} \sqrt{\frac{x + \sin x}{x - \cos x}} = 1 \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Exercise|99 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)sqrt((x+sinx)/(x-cosx))

lim_(xrarroo) (x^2-sinx)/(x^2-2)

lim_(xrarroo) (sinx)/(x)=?

Evaluate lim_(xto oo)sqrt((x-sinx)/(x+cos^(2)x))

lim_(xrarroo)(sqrt(x^(2)+sin^(2)x))/(x+cosx)

lim_(xrarroo) (sqrt(x^2+2x-1)-x)=

lim_(xrarroo)(sqrt(x+sqrtx)-sqrtx) is

The value of lim_(xrarroo) (sinx)/(x) , is

lim_(xrarroo) (2x)/(1+4x)

OBJECTIVE RD SHARMA-LIMITS-Chapter Test
  1. lim(xrarr0) (x)/(tan^-1x) is equal to

    Text Solution

    |

  2. If f(x) =x , x<0 and f(x)=1 , x = 0, and f(x)=x^2,x>0 then lim(x->0) ...

    Text Solution

    |

  3. lim(xrarroo) sqrt((x+sinx)/(x-cos x))=

    Text Solution

    |

  4. Evaluate: ("lim")(xvecoo)(1+1/(a+b x))^(c+dx),w h e r ea , b , c ,a n ...

    Text Solution

    |

  5. If f'(2)=2, f''(2) =1, then lim(xrarr2)(2x^2-4f'(x))/(x-2), is

    Text Solution

    |

  6. lim(xrarr0) (e^(tanx)-e^x)/(tanx-x)=

    Text Solution

    |

  7. The value of lim(xrarr2^-) {x+(x-[x])^2}, is

    Text Solution

    |

  8. lim(xto0) ((e^x+e^-x-2)/(x^2))^(1//x^2) is equal to

    Text Solution

    |

  9. The value of lim(x->oo)(pi/2-tan^(- 1)x)^(1/x^2), is

    Text Solution

    |

  10. The value of lim(x->a) (sinx/sina)^(1/(x-a))=

    Text Solution

    |

  11. The value of lim(xrarroo)((x^2 +2x+3)/(2x^2+x+5))^((3x+2)/(3x+2)), is

    Text Solution

    |

  12. Evaluate: lim(x->oo) { ((a1)^(1/x)+(a2)^(1/x)+.... +(an)^(1/x))/n}^(n...

    Text Solution

    |

  13. The value of lim(xrarr0) ((sinx)/(x))^((sinx)/(x-sinx)), is

    Text Solution

    |

  14. lim(x->1)[(x^3+2x^2+x+1)/(x^2+2x+3)]^((1-cos(x-1))/(x-1)^2)

    Text Solution

    |

  15. The value of lim(xrarr0) (sinx)/(xqrt(x^2)), is

    Text Solution

    |

  16. Let f:R to R be a differentiable function such that f(2)=2. Then, the ...

    Text Solution

    |

  17. Let f''(x) be continuous at x = 0 and f"(0) = 4 then value of lim(x->0...

    Text Solution

    |

  18. Suppose f: RvecR is a differentiable function and f(1)=4. Then valu...

    Text Solution

    |

  19. Find the value of a and b if lim(x->0)(x(1+a c o s x)-bsinx)/(x^3)=1

    Text Solution

    |

  20. If lim(x->a)(f(x)/(g(x))) exists, then

    Text Solution

    |