Home
Class 12
MATHS
Statement - 1 : The value of the integra...

Statement - 1 : The value of the integral `int(e^(3x)+e^(x))/(e^(4x)+1)dx " is "(1)/(sqrt(2))tan^(-1)((e^(x)-e^(-x))/(sqrt(2)))+C`
Statement -2: A primitive of the function f (x) `=(x^(2)+1)/(x^(4)+1)`is `(1)/(sqrt(2))tan^(-1)((x^(2)-1)/(sqrt(2)x))`.

A

Statement - 1 True , Statement -2 is True , Statement -2 is a correct explanation for Statement -1.

B

Statement - 1 is True , Statement -2 is True , Statement -2 is a correct explanation for Statement -1.

C

Statement - 1 True ,Statement - 2 is False.

D

Statement - 1 is False , Statement - 2 is True.

Text Solution

Verified by Experts

A primitive of the function f (x) `=(x^(2)+1)/(x^(4)+1)` is given by
`I=int(x^(2)+1)/(x^(4)+1)dx=int(1+(1)/(x^(2)))/(x^2+(1)/(x^(2)))dx`
`rArrI=int(1)/((x-(1)/(x))^(2)+(sqrt(2))^(2))d(x-(1)/(x))=(1)/(sqrt(2))tan^(-1)((x-(1)/(x))/(sqrt(2)))+C`
So , Statement - 2 is true.
Now , `I=int(e^(3x)+e^(x))/(e^(4x)+1)dx=int((e^(x))^(2)+1)/((e^(x))^(4)+1)d(e^(x))`
`rArrI=(1)/(sqrt(2))tan^(-1)((e^(2x)-1)/(sqrt(2)e^(x)))+C` " " [ Using statement -2]
`rArrI=(1)/(sqrt(2))tan^(-1)((e^(x)-e^(-x))/(sqrt(2)))+C`
So , statement - 1 is true .Also , statement -2 is a correct explanation for statement -1.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|62 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Solved Example|92 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

int sqrt((e^(3x)-e^(2x))/(e^(x)+1))dx

int(e^(x))/(sqrt(e^(2x)-1))dx=

int(e^(2x))/(sqrt(1-e^(2x)))dx

The value of int sqrt((e^(x)-1)/(e^(x)+1))dx

int(dx)/(sqrt(2e^(x)-1))=

" If "int(1)/(x^(4)+1)dx=(1)/(2sqrt(2))tan^(-1)((x^(2)-1)/(sqrt(2)x))+A+c" .Then "A" is equal to "

" If "int(1)/(x^(4)+1)dx=(1)/(2sqrt(2))tan^(-1)((x^(2)-1)/(sqrt(2)x))+A+c" .Then "A" is equal to "

Evaluate int(e^(x))/(sqrt(1-e^(2x)))dx

The value of definite integral int_(1)^(e)(dx)/(sqrt(x^(2)ln x+(x ln x)^(2))) is

(v)int e^x(sqrt(1-x^(2))-(x)/(sqrt(1-x^2))dx)