Home
Class 12
MATHS
Statement -1 : If I(1)=int(e^(x))/(e^(4...

Statement -1 : If `I_(1)=int(e^(x))/(e^(4x)+e^(2x)+1)dx` and
`I_(2)=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx`, then
`I_(2)-I_(1)=(1)/(2)log((e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1))+C`
where C is an arbitrary constant.
Statement -2 : A primitive of f(x) `=(x^(2)-1)/(x^(4)+x^(2)+1)` is
`(1)/(2)log((x^(2)-x+1)/(x^(2)+x+1))`.

A

Statement - 1 True , Statement -2 is True , Statement -2 is a correct explanation for Statement -1.

B

Statement - 1 is True , Statement -2 is True , Statement -2 is a correct explanation for Statement -1.

C

Statement - 1 True ,Statement - 2 is False.

D

Statement - 1 is False , Statement - 2 is True.

Text Solution

Verified by Experts

A primitive of f (x) `=(x^(2)-1)/(x^(4)+x^(2)+1)` is given by
`I=int(x^(2)=1)/(x^(4)+x^(2)+1)dx=int(1-(1)/(x^(2)))/(x^(2)+(1)/(x^(2))+1)dx`
`rArrI=int(1)/((x+(1)/(x))^(2)-1^(2))d(x+(1)/(x))=(1)/(2)log|(x+(1)/(x)-1)/(x+(1)/(x)+1)|+C`
`rArrI=int(1)/(2)log((x^(2)-x+1)/(x^(2)+x+1))+C`
So , statement - 2 is true.
Now , `I_(2)-I_(1)=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx-int(e^(x))/(e^(4x)+e^(2x)+1)dx`
`rArrI_(2)-I_(1)=int(e^(3x))/(e^(4x)+e^(2x)+1)dx-int(e^(x))/(e^(4x)+e^(2x)+1)dx`
`rArrI_(2)-I_(1)=int(e^(3x))/(e^(4x)+e^(2x)+1)d(e^(x))`
`rArrI_(2)-I_(1)=(1)/(2)log((e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1))+C` [ Using statment -2 ]
So , statement - 1 is true . Also . statement - 2 is a correct explanation for statement -1.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|62 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Solved Example|92 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

int(e^(x))/((1+e^(x))(2+e^(x)))dx

int(e^(4x)-1)/(e^(2x))dx

int(e^(x))/((e^(x)-1)(e^(x)+2))dx=

I=int(e^(2x)-1)/(e^(2x))dx

int (e^(2x)-1)/(e^(2x)+1) dx=?

int_(0)^(1)(e^(x))/(1+e^(2x))dx

int(e^(2x)+1)/(e^(2x)-1)dx=

int1/((e^(2x)+e^(-2x))^(2))dx=

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx

int(e^(2x-1)-e^(1-2x))/(e^(x+2))dx