Home
Class 12
MATHS
If the unit vectors veca and vecb are ...

If the unit vectors ` veca and vecb ` are inclined of an angle ` 2 theta` such that ` |veca -vecb| lt 1 and 0 le theta le pi` then ` theta` in the interval

A

` [ 0,pi/6) cup ( 5pi //6,pi ]`

B

` [ 0,pi]`

C

`[ pi//6, pi//2]`

D

`[pi//2, 5pi//6]`

Text Solution

Verified by Experts

The correct Answer is:
A

we have
` |veca -vecb|^(2) = |veca |^(2) +|vecb|^(2) =-2 (veca.vecb)`
` Rigtharrow |veca -vecb|^(2) = |veca|^(2) +|vecb|^(2) -2|veca||vecb|cos 2 theta`
` Rightarrow |veca -vecb|^(2) =2-2 cos 2 theta " " [ |veca| =|vecb|=1]`
` Rightarrow |veca -vecb|^(2) =4 sin ^(2) theta`
` Rightarrow |veca -vecb| =2 |sin theta |`
now,
` |veca -vecb|lt 1`
` Rightarrow 2|sin theta| lt 1 Rightarrow |sin theta| lt 1/2 Rightarrow theta in [ 0, pi//6) cup ( 5pi//6,pi]`
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|65 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

If unit vectors veca and vecb are inclined at an angle 2 theta such that |veca - vecb| lt 1 and 0 le theta le pi , then theta lies in the interval

If the unit vectors veca and vecb are inclined at an angle 2theta such that |veca-vecb|lt1 and 0lethetalepi then theta lies in the intervasl. (A) [0,pi/6] (B) (5pi/6,pi] (C) [pi/2,5pi/6] (D) [pi/6,pi/2]

If veca and vecb are unit vectors inclined at an angle theta , then the value of |veca-vecb| is

Let veca and vecb are unit vectors inclined at an angle alpha to each other , if |veca+vecb| lt 1 then

If the unit vectors vec(e_(1)) and vec(e_(2)) are inclined at an angle 2theta and |vec(e_(1)) - vec(e_(2))| lt 2 , then for theta in [0,pi], theta may lie in the interval

If two vectors vecA and vecB are at an angle theta ne 0^(@) , then

Vectors veca and vec b are inclined at an angle theta = 120^@ . If |veca| = |vecb| = 2 , then [(veca + 3vecb) xx (3veca + vecb)]^2 is equal to

If veca and vecb are two vectors and angle between them is theta , then

vectors veca and vecb are inclined at an angle theta = 60^(@). " If " |veca|=1, |vecb| =2 , " then " [ (veca + 3vecb) xx ( 3 veca -vecb)] ^(2) is equal to