Home
Class 12
MATHS
Let veca and vecb are two vectors incli...

Let ` veca and vecb` are two vectors inclined at an angle of ` 60^(@) , If |veca|=|vecb|=2` ,the the angle between ` veca and veca + vecb` is

A

` 30^(@)`

B

`60^(@)`

C

`45^(@)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vector \(\vec{a}\) and the vector \(\vec{a} + \vec{b}\), we can follow these steps: ### Step 1: Understand the given information We know: - The magnitudes of both vectors are equal: \(|\vec{a}| = |\vec{b}| = 2\) - The angle between the vectors \(\vec{a}\) and \(\vec{b}\) is \(60^\circ\). ### Step 2: Calculate the magnitude of \(\vec{a} + \vec{b}\) To find the magnitude of the resultant vector \(\vec{a} + \vec{b}\), we can use the formula: \[ |\vec{a} + \vec{b}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 + 2 |\vec{a}| |\vec{b}| \cos \theta} \] Substituting the values: - \(|\vec{a}| = 2\) - \(|\vec{b}| = 2\) - \(\theta = 60^\circ\) (where \(\cos 60^\circ = \frac{1}{2}\)) So, \[ |\vec{a} + \vec{b}| = \sqrt{2^2 + 2^2 + 2 \cdot 2 \cdot 2 \cdot \frac{1}{2}} \] \[ = \sqrt{4 + 4 + 4} = \sqrt{12} = 2\sqrt{3} \] ### Step 3: Use the dot product to find the angle between \(\vec{a}\) and \(\vec{a} + \vec{b}\) The dot product formula states: \[ \vec{a} \cdot (\vec{a} + \vec{b}) = |\vec{a}| |\vec{a} + \vec{b}| \cos \alpha \] Where \(\alpha\) is the angle between \(\vec{a}\) and \(\vec{a} + \vec{b}\). Calculating \(\vec{a} \cdot (\vec{a} + \vec{b})\): \[ \vec{a} \cdot (\vec{a} + \vec{b}) = \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} = |\vec{a}|^2 + |\vec{a}| |\vec{b}| \cos 60^\circ \] \[ = 2^2 + 2 \cdot 2 \cdot \frac{1}{2} = 4 + 2 = 6 \] ### Step 4: Substitute into the dot product equation Now substituting back into the dot product equation: \[ 6 = 2 \cdot 2\sqrt{3} \cos \alpha \] \[ 6 = 4\sqrt{3} \cos \alpha \] \[ \cos \alpha = \frac{6}{4\sqrt{3}} = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2} \] ### Step 5: Find the angle \(\alpha\) The value \(\cos \alpha = \frac{\sqrt{3}}{2}\) corresponds to: \[ \alpha = 30^\circ \] ### Conclusion Thus, the angle between \(\vec{a}\) and \(\vec{a} + \vec{b}\) is \(30^\circ\).

To find the angle between the vector \(\vec{a}\) and the vector \(\vec{a} + \vec{b}\), we can follow these steps: ### Step 1: Understand the given information We know: - The magnitudes of both vectors are equal: \(|\vec{a}| = |\vec{b}| = 2\) - The angle between the vectors \(\vec{a}\) and \(\vec{b}\) is \(60^\circ\). ### Step 2: Calculate the magnitude of \(\vec{a} + \vec{b}\) ...
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|65 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

If |veca.vecb|= |veca xx vecb| , then the angle between veca and vecb is

Let veca and vecb are unit vectors inclined at an angle alpha to each other , if |veca+vecb| lt 1 then

If |veca - vecb|=|veca| =|vecb|=1 , then the angle between veca and vecb , is

If |vecA-vecB|=|vecA|=|vecB| , the angle between vecA and vecB is

If |veca+vecb|^2=|veca|^2+|vecb|^2 then angle between veca and vecb is

If veca and vecb are unit vectors inclined at an angle theta , then the value of |veca-vecb| is

The angle between vector (vecA) and (vecA-vecB) is :

vectors veca and vecb are inclined at an angle theta = 60^(@). " If " |veca|=1, |vecb| =2 , " then " [ (veca + 3vecb) xx ( 3 veca -vecb)] ^(2) is equal to

If |vecA+vecB|=|vecA|+|vecB| , then angle between vecA and vecB will be

Vectors veca and vec b are inclined at an angle theta = 120^@ . If |veca| = |vecb| = 2 , then [(veca + 3vecb) xx (3veca + vecb)]^2 is equal to