Home
Class 12
MATHS
Let veca , vecb,vecc be three vectors s...

Let ` veca , vecb,vecc` be three vectors such that
` veca bot ( vecb + vecc), vecb bot ( vecc + veca) and vecc bot ( veca + vecb) , " if " |veca| =1 , |vecb| =2 `,
` |vecc| =3 , " then " | veca + vecb + vecc|` is,

A

` sqrt6`

B

14

C

` sqrt14`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

we have,
` veca bot ( vecb + vecc), vecb bot ( vecc + veca) and vecc bot ( veca + vecb) `
` Rightarrow veca.vecb + veca.vecc =0, vecb.veca =0, vecc.veca + vecc.vecb =0`
` Rightarrow veca.vecb = vecb.vecc= vecc.veca =0`
` |veca + vecb + vecc|^(2) = |veca|^(2) + 2 (veca.vecb + vecb.vecc + vecc. veca)`
` Rightarrow |veca + vecb + vecc|^(2) = 1+ 4+9 =14`
` Rightarrow |veca + vecb+ vecc| = sqrt 14`
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|65 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If |veca|=4, |vecb|=4 and |vecc|=5 such that veca bot vecb + vecc, vecb bot (vecc + veca) and veca bot (veca + vecb) , then |veca + vecb + vecc| is:

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

If veca, vecb,vecc are three on-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)=vecc=0 then (vecaxxvecb)xxvecc is

Let veca ,vecb , vecc be three unit vectors such that angle between veca and vecb is alpha , vecb and vecc " is " beta and vecc and veca " is " gamma. " if " | veca. + vecb + vecc| =2 , then cos alpha + cos beta + cos beta =

If veca, vecb and vecc are vectors such that veca. vecb = veca.vecc, veca xx vecb = veca xx vecc, a ne 0. then show that vecb = vecc.