Home
Class 12
MATHS
If veca =hati + hatj-hatk, vecb = - hat...

If `veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk` , then a unit vector normal to the vectors `veca + vecb and vecb -vecc`, is

A

`hati`

B

`hatj`

C

`hatk`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find a unit vector normal to the vectors \(\vec{a} + \vec{b}\) and \(\vec{b} - \vec{c}\), we will follow these steps: ### Step 1: Calculate \(\vec{a} + \vec{b}\) Given: \[ \vec{a} = \hat{i} + \hat{j} - \hat{k} \] \[ \vec{b} = -\hat{i} + 2\hat{j} + 2\hat{k} \] Now, we add the two vectors: \[ \vec{a} + \vec{b} = (\hat{i} - \hat{i}) + (\hat{j} + 2\hat{j}) + (-\hat{k} + 2\hat{k}) \] \[ = 0\hat{i} + 3\hat{j} + 1\hat{k} \] \[ = 3\hat{j} + \hat{k} \] ### Step 2: Calculate \(\vec{b} - \vec{c}\) Given: \[ \vec{c} = -\hat{i} + 2\hat{j} - \hat{k} \] Now, we subtract \(\vec{c}\) from \(\vec{b}\): \[ \vec{b} - \vec{c} = (-\hat{i} + 2\hat{j} + 2\hat{k}) - (-\hat{i} + 2\hat{j} - \hat{k}) \] \[ = (-\hat{i} + 2\hat{j} + 2\hat{k}) + \hat{i} - 2\hat{j} + \hat{k} \] \[ = 0\hat{i} + 0\hat{j} + 3\hat{k} \] \[ = 3\hat{k} \] ### Step 3: Find the cross product \((\vec{a} + \vec{b}) \times (\vec{b} - \vec{c})\) Now we find the cross product: \[ (3\hat{j} + \hat{k}) \times (3\hat{k}) \] Using the determinant method for the cross product: \[ \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 3 & 1 \\ 0 & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} 0 & 1 \\ 0 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} 0 & 3 \\ 0 & 0 \end{vmatrix} \] \[ = \hat{i} (3 \cdot 3 - 0 \cdot 1) - \hat{j} (0 - 0) + \hat{k} (0 - 0) \] \[ = 9\hat{i} + 0\hat{j} + 0\hat{k} \] \[ = 9\hat{i} \] ### Step 4: Normalize the resulting vector To find the unit vector, we divide by its magnitude: \[ \text{Magnitude} = \sqrt{9^2} = 9 \] \[ \text{Unit vector} = \frac{9\hat{i}}{9} = \hat{i} \] ### Final Answer The unit vector normal to the vectors \(\vec{a} + \vec{b}\) and \(\vec{b} - \vec{c}\) is: \[ \hat{i} \]

To find a unit vector normal to the vectors \(\vec{a} + \vec{b}\) and \(\vec{b} - \vec{c}\), we will follow these steps: ### Step 1: Calculate \(\vec{a} + \vec{b}\) Given: \[ \vec{a} = \hat{i} + \hat{j} - \hat{k} \] ...
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|65 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

If veca = (3hati + hatj - 5hatk) and vecb = (hati + 2hatj - hatk) then find a unit vector in the direction of (veca-vecb) .

Given : vecA = 2hati - hatj + 2hatk and vecB = -hati - hatj + hatk . The unit vector of vecA - vecB is

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3cevc .

If veca = (-hati + hatj - hatk) and vecb = (2hati- 2hatj + 2hatk) then find the unit vector in the direction of (veca + vecb) .

If veca = (hati - 2hatj -3hatk) and vecb = (2hati + 4hatj +9 hatk) then find a unit vector parallel to (veca + vecb) .

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca,' = hati + hatj, vecb'= hati - hatj + 2hatk nad vecc' = 2hati = hatj - hatk then the altitude of the parallelepiped formed by the vectors, veca, vecb and vecc having baswe formed by vecb and vecc is ( where veca' is recipocal vector veca, , etc.

If veca,' = hati + hatj, vecb'= hati - hatj + 2hatk nad vecc' = 2hati = hatj - hatk then the altitude of the parallelepiped formed by the vectors, veca, vecb and vecc having baswe formed by vecb and vecc is ( where veca' is recipocal vector veca, , etc.

If vecA = 2 hati + hatj + hatk and vecB = hati + hatj + hatk are two vectores, then the unit vector is