Home
Class 12
MATHS
A unit vector perpendicular to both ha...

A unit vector perpendicular to both ` hati + hatj and hatj + hatk` is

A

`hati -hatj +hatk`

B

` hati +hatj + hatk`

C

` ( hati +hatj +hatk)/(sqrt3)`

D

` (hati -hatj +hatk)/( sqrt3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find a unit vector that is perpendicular to both vectors \( \hat{i} + \hat{j} \) and \( \hat{j} + \hat{k} \), we will follow these steps: ### Step 1: Define the Vectors Let: - Vector \( \mathbf{A} = \hat{i} + \hat{j} \) - Vector \( \mathbf{B} = \hat{j} + \hat{k} \) ### Step 2: Calculate the Cross Product The cross product \( \mathbf{A} \times \mathbf{B} \) will give us a vector that is perpendicular to both \( \mathbf{A} \) and \( \mathbf{B} \). To calculate the cross product, we set up the determinant: \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} \] ### Step 3: Compute the Determinant Calculating the determinant, we have: \[ \mathbf{A} \times \mathbf{B} = \hat{i} \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} = 1 \cdot 1 - 0 \cdot 1 = 1 \) 2. \( \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 \cdot 1 - 0 \cdot 0 = 1 \) 3. \( \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1 \cdot 1 - 1 \cdot 0 = 1 \) Thus, we have: \[ \mathbf{A} \times \mathbf{B} = \hat{i}(1) - \hat{j}(1) + \hat{k}(1) = \hat{i} - \hat{j} + \hat{k} \] ### Step 4: Find the Magnitude of the Resulting Vector The magnitude of the vector \( \hat{i} - \hat{j} + \hat{k} \) is calculated as follows: \[ |\mathbf{C}| = \sqrt{(1)^2 + (-1)^2 + (1)^2} = \sqrt{1 + 1 + 1} = \sqrt{3} \] ### Step 5: Calculate the Unit Vector To find the unit vector, we divide the vector \( \hat{i} - \hat{j} + \hat{k} \) by its magnitude \( \sqrt{3} \): \[ \mathbf{u} = \frac{1}{\sqrt{3}}(\hat{i} - \hat{j} + \hat{k}) = \frac{1}{\sqrt{3}} \hat{i} - \frac{1}{\sqrt{3}} \hat{j} + \frac{1}{\sqrt{3}} \hat{k} \] ### Final Answer The unit vector perpendicular to both \( \hat{i} + \hat{j} \) and \( \hat{j} + \hat{k} \) is: \[ \mathbf{u} = \frac{1}{\sqrt{3}} \hat{i} - \frac{1}{\sqrt{3}} \hat{j} + \frac{1}{\sqrt{3}} \hat{k} \]

To find a unit vector that is perpendicular to both vectors \( \hat{i} + \hat{j} \) and \( \hat{j} + \hat{k} \), we will follow these steps: ### Step 1: Define the Vectors Let: - Vector \( \mathbf{A} = \hat{i} + \hat{j} \) - Vector \( \mathbf{B} = \hat{j} + \hat{k} \) ### Step 2: Calculate the Cross Product ...
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|65 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

Find a unit vector perpendicular to both the vectors hati-2hatj+hatk and hati+2hatj+hatk .

A unit vector perpendicular to the plane of veca = 2hati -6hatj -3hatk and vecb = 4hati +3hatj-hatk is

A unit vector perpendicular to both the vectors 2hati-2hatj+hatk and 3hati+4hatj-5hatk , is

Determine a unit vecor perpendicular to both vec(A) = 2 hati +hatj +hatk and vec(B) = hati - hatj +2hatk

Find a unit vector perpendicular to both the vectors 2hati+3hatj+hatk) and (hati-hatj+2hatk) .

The unit vector perpendicular to the vectors 6hati+2hatj+3hatk and 3hati-6hatj-2hatk , is

A vector perpendicular to both of the vectors hati+hatj+hatk and hati+hatj is

Determine a unit vector perpendicular to both the vectors vecA=2hati-3hatj+6hatk and vecB=hati-2hatj+4hatk