Home
Class 12
MATHS
Let vecu = u(1) hati + u(2) hatj be a u...

Let ` vecu = u_(1) hati + u_(2) hatj` be a unit vector in xy plane and ` vecw = 1/sqrt6 (hati +hatj +2hatk)` . Given that there exists a vector `vecc` " in " `R_(3)` " such that `|vecu xx vecv|=1` and `vecw `. `(vecu xx vecv) =1` , then

A

`|u_(1)|=|u_(2)|`

B

`|u_(2)|=2|u_(2)|`

C

` 2|u_(1)|=|u_(2)|`

D

` |u_(1)|-3|u_(2)|`

Text Solution

Verified by Experts

The correct Answer is:
A

we have ,
` veca.vecb= veca.vecc = vec0`
` Rightarrow veca bot vecb, veca bot vecc`
` Rightarrow veca || (vecb xx vecc)`
` Rightarrow veca = +- (vecb xx vecc)/(|vecb xx vecc|) =+- (|vecb xx vecc|)/(|vecb||vecc| sin pi/3) = +- 2 ( vecb xx vecc)`
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|65 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

Let vecu = u_(1)hati + u_(2)hatj +u_(3)hatk be a unit vector in R^(3) and vecw = 1/sqrt6 ( hati + hatj + 2hatk) , Given that there exists a vector vecv " in " R^(3) such that | vecu xx vecv| =1 and vecw . ( vecu xx vecv) =1 which of the following statements is correct ?

Let vecu=u_(1)hati +u_(3)hatk be a unit vector in xz-plane and vecq = 1/sqrt6 ( hati + hatj + 2hatk) . If there exists a vector vecv in such that |vecu xx vecu|=1 and vecw . (vecu xx vecc) .Then

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca=hati+hatj+hatk and vecb = hati-2hatj+hatk then find vector vecc such that veca.veca = 2 and veca xx vecc = vecb

Let veca =hati + hatj + sqrt2 hatk, vecb = b_(1) hati + b _(2) hatj + sqrt2 hatk and vecc = 5 hati + hatj + sqrt2 hatk be three vectors such that the projection vector of vecb on veca is veca. If veca + vecb perpendicular to vecc, then |vecb| is equal to

Let vecu and vecv be unit vectors such that vecu xx vecv + vecu = vecw and vecw xx vecu = vecv . Find the value of [vecu vecv vecw ]

If vecu and vecv be unit vectors. If vecw is a vector such that vecw+(vecwxxvecu)=vecv then vecu.(vecvxxvecw) will be equal to

veca=2hati+hatj+2hatk, vecb=hati-hatj+hatk and non zero vector vecc are such that (veca xx vecb) xx vecc = veca xx (vecb xx vecc) . Then vector vecc may be given as

Let vecu= hati + hatj , vecv = hati -hatja and hati -hatj and vecw =hati + 2hatj + 3 hatk If hatn isa unit vector such that vecu .hatn=0 and vecn .hatn =0 , " then " |vecw.hatn| is equal to