Home
Class 12
MATHS
Let veca , vecb , vecc represent respec...

Let ` veca , vecb , vecc` represent respectively `vec(BC), vec(CA) and vec(AB) ` where ABC is a triangle , Then ,

A

`veca + vecb = vecc`

B

` vecb + vecc = veca`

C

` veca xx vecb = vecb xx vecc = vecc xx veca`

D

` [ veca vecb vecc] = [ vecb vecc veca] = [ vecc veca vecb] ne 0`

Text Solution

Verified by Experts

The correct Answer is:
C

we have,
` vec(BC) + vec(CA) = vec(BA) `
` Rightarrow veca + vecb = -vecc`
` Rightarrow veca + vecb + vecc = vec0`
` Rightarrow veca xx ( veca + vecb + vecc) -veca xx vec0`
` Rightarrow veca xx vecb + veca xx vecc = vec0 Rightarrow veca xx vecb = vecc xx veca`
Similarly , we have, ` vecb xx vecc - vecc xx veca`
` veca xx vecb = vecb xx vecc = vecc xx veca `
Clearly, ` veca , vecb, vecc` are coplanar vectors.
` [ veca vecb vecc] = [ vecb vecc veca] = [ vecc veca vecb ] = 0`
So, option (d) is not correct. \
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|65 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

Ab, AC and AD are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector veca . The vector of the faces containing vertices A, B , C and A, B, D are vecb and vecc , respectively , i.e. vec(AB) xx vec(AC)=vecb and vec(AD) xx vec(AB) = vecc the projection of each edge AB and AC on diagonal vector veca is |veca|/3 vector vec(AC) is

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

Let vec a,vec b,vec c form sides BC,CA and AB respectively of a triangle ABC then

Prove that the resultant of the vectors represented by the sides vec(AB) and vec(AC) of a triangle ABC is 2 vec(AD) , where D is the mid - point of [BC].

The position vector of foru points A,B,C,D are veca, vecb, 2veca+3vecb and veca-2vecb respectively. Expess the vectors vec(AC), vec(DB), vec(BC) and vec(CA) in terms of veca and vecb .

If veca+2vecb+3vecc, 2veca+vecb+3vecc, 2vec+5veb-vecc and veca-vecb-vecc be the positions vectors A,B,C and D respectively, prove that vec(AB) and vec(CD) are parallel. Is ABCD a parallelogram?

Let veca , vecb, vec c be three non coplanar vectors , and let vecp , vecq " and " vec r be the vectors defined by the relation vecp = (vecb xx vec c )/([veca vecb vec c ]), vec q = (vec c xx vec a)/([veca vecb vec c ]) " and " vec r = (vec a xx vec b)/([veca vecb vec c ]) Then the value of the expension (vec a + vec b) .vec p + (vecb + vec c) .q + (vec c + vec a) . vec r is equal to

Let veca, vecb ,vecc be unit vetors such that veca + vecb + vecc = vec0 , which one of the following is correct ?

Let ABC be a triangle whose circumcentre is at P. If the position vectors of A, B, C and P are vec(a) , vec(b) , vec(c ) and (vec(a) + vec(b) + vec(c ))/(4) respectively, then the position vector of the orthocentre of this triangle is