Home
Class 12
MATHS
If veca , vecb are unit vectors such th...

If ` veca , vecb` are unit vectors such that the vector ` veca + 3vecb ` is peependicular to ` 7 veca - vecb and veca -4vecb` is prependicular to ` 7 veca -2vecb` then the angle between ` veca and vecb` is

A

` pi//6`

B

` pi//4`

C

` pi//3`

D

` pi//2`

Text Solution

Verified by Experts

The correct Answer is:
C

Let ` theta` be the angle between `veca and vecb` is
we have,
` ( veca + 3vecb) bot ( 7 veca - 5vecb)`
` Rightarrow ( veca + 3vecb) . ( 7 veca -5vecb) =0 `
` Rightarrow 7|veca|^(2) + 16(veca .vecb) -15 |vecb|^(2) =0`
` Rightarrow 15-30 cos theta =0 Rightarrow cos theta = 1/2 Rightarrow 1/2 Rightarrow theta = pi/3`
And,
` (veca - 4 vecb ) bot ( 7veca - 2vecb)`
` Rightarrow (veca -4vecb) . ( 7 veca - 2 vecb) =0`
` Rightarrow 7| veca|^(2) + 8|vecb|^(2) -30 (veca .vecb) =0`
` Rightarrow 15-30 cos theta =0 Rightarrow = 1/2 Rightarrow = pi /3`
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|65 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

If (veca + 3 vecb) is perpendicular to ( 7 veca - 5 vecb) and ( veca - 4 vecb) is perpendicular to ( 7 veca - 2 vecb) , then the angle between veca and vecb ( in degrees ) is ______

If |veca.vecb|= |veca xx vecb| , then the angle between veca and vecb is

If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4vecb are perpendicular to each other, then the angle between veca and vecb is

If veca , vecb are two vectors such that | (veca+vecb)=|veca| then prove that 2 veca + vecb is perpendicular to vecb.

If |veca - vecb|=|veca| =|vecb|=1 , then the angle between veca and vecb , is

If veca, vecb are unit vectors such that |veca +vecb|=1 and |veca -vecb|=sqrt3 , " then " |3veca +2vecb|=

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

Vectors 3veca-5vecb and 2veca + vecb are mutually perpendicular. If veca + 4 vecb and vecb - veca are also mutually perpendicular, then the cosine of the angle between veca nad vecb is

If |vecA + vecB| = |vecA - vecB| , then the angle between vecA and vecB will be