Home
Class 12
MATHS
Let a,b,c denote the lengths of the side...

Let a,b,c denote the lengths of the sides of a triangle such that
` ( a-b) vecu + ( b-c) vecv + ( c-a) (vecu xx vecv) = vec0`
For any two non-collinear vectors ` vecu and vecu`,then the triangle is

A

right angled

B

equilateral

C

isoscels

D

obtuse angled

Text Solution

Verified by Experts

The correct Answer is:
B

Since, ` vecu , vecv and vecu xx vecv` , are non- coplanar vectors.
` (a -b) vecu + ( b -c) vecu + ( c-a) ( vecu xx vecv) = vec0`
` Rightarrow a-b=0=b -c =c -a`
` Rightarrow a-b =0=b -c = c-a`
` Rightarrow a=l=c `
` Rightarrow ` Triangle is equilateral.
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|65 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

vec a and vec b are two non-collinear unit vectors vec a,vec b,xvec a-yvec b form a triangle.

Let a<=b<=c be the lengths of the sides of a triangle.If a^(2)+b^(2)

If vec xa n d vec y are two non-collinear vectors and a, b, and c represent the sides of a A B C satisfying (a-b) vec x+(b-c) vec y+(c-a)( vec xxx vec y)=0, then A B C is (where vec xxx vec y is perpendicular to the plane of xa n dy ) a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. a scalene triangle

If vecx and vecy are two non-collinear vectors and a, b and c represent the sides of a Delta ABC satisfying (a-b)vec x + (b-c)vecy+ (c-a)(vecxxx vecy) =0 , then Delta ABC is (where vecx xx vecy is perpendicular to the plane of vecx and vecy )

Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(veca.vecb)vecb and vec=vecaxxvecb , then |vecv| is

Let vecu and vecv be unit vectors such that vecu xx vecv + vecu = vecw and vecw xx vecu = vecv . Find the value of [vecu vecv vecw ]

Let ABC be a triangle whose circumcentre is at P. If the position vectors of A, B, C and P are vec(a) , vec(b) , vec(c ) and (vec(a) + vec(b) + vec(c ))/(4) respectively, then the position vector of the orthocentre of this triangle is

If vec a , vec b , vec c are three non-zero vectors (no two of which are collinear), such that the pairs of vectors (vec a + vec b, vec c) and (vec b + vec c , vec a) are collinear, then vec a + vec b + vec c =

Let vec a,vec b and vec c be three non-zero vectors such that no two of them are collinear and (vec a xxvec b)xxvec c=(1)/(3)|vec b||vec c|vec a* If theta is the angle between vectors vec b and vec c, then the value of sin theta is:

If vecu, vecv, vecw are three non-coplanar vectors, the (vecu+vecv-vecw).(vecu-vecv)xx(vecv-vecw) equals