Home
Class 12
MATHS
If [veca vecb vecc]=1 then value of (vec...

If `[veca vecb vecc]=1` then value of `(veca.vecbxxvecc)/(veccxxveca.vecb)+(vecb.veccxxveca)/(vecaxxvecb.vecc)+(vecc.vecaxxvecb)/(vecbxxvecc.veca)` is

A

`3`

B

`1`

C

`-1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given the condition that the scalar triple product \([ \vec{a}, \vec{b}, \vec{c} ] = 1\). The expression we need to evaluate is: \[ \frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{\vec{c} \times \vec{a} \cdot \vec{b}} + \frac{\vec{b} \cdot (\vec{c} \times \vec{a})}{\vec{a} \times \vec{b} \cdot \vec{c}} + \frac{\vec{c} \cdot (\vec{a} \times \vec{b})}{\vec{b} \times \vec{c} \cdot \vec{a}} \] ### Step 1: Identify the Scalar Triple Products Recall that the scalar triple product \([ \vec{a}, \vec{b}, \vec{c} ]\) can be expressed in terms of dot and cross products: - \([ \vec{a}, \vec{b}, \vec{c} ] = \vec{a} \cdot (\vec{b} \times \vec{c})\) - \([ \vec{b}, \vec{c}, \vec{a} ] = \vec{b} \cdot (\vec{c} \times \vec{a})\) - \([ \vec{c}, \vec{a}, \vec{b} ] = \vec{c} \cdot (\vec{a} \times \vec{b})\) Given that \([ \vec{a}, \vec{b}, \vec{c} ] = 1\), we can say: - \(\vec{a} \cdot (\vec{b} \times \vec{c}) = 1\) - \(\vec{b} \cdot (\vec{c} \times \vec{a}) = 1\) - \(\vec{c} \cdot (\vec{a} \times \vec{b}) = 1\) ### Step 2: Substitute the Scalar Triple Products into the Expression Now we can substitute these values into the expression: \[ \frac{1}{\vec{c} \times \vec{a} \cdot \vec{b}} + \frac{1}{\vec{a} \times \vec{b} \cdot \vec{c}} + \frac{1}{\vec{b} \times \vec{c} \cdot \vec{a}} \] ### Step 3: Recognize the Denominators Next, we notice that: - \(\vec{c} \times \vec{a} \cdot \vec{b} = [ \vec{c}, \vec{a}, \vec{b} ] = 1\) - \(\vec{a} \times \vec{b} \cdot \vec{c} = [ \vec{a}, \vec{b}, \vec{c} ] = 1\) - \(\vec{b} \times \vec{c} \cdot \vec{a} = [ \vec{b}, \vec{c}, \vec{a} ] = 1\) ### Step 4: Substitute the Values into the Expression Substituting these values into the expression gives us: \[ \frac{1}{1} + \frac{1}{1} + \frac{1}{1} = 1 + 1 + 1 = 3 \] ### Final Answer Thus, the value of the given expression is: \[ \boxed{3} \]

To solve the problem, we need to evaluate the expression given the condition that the scalar triple product \([ \vec{a}, \vec{b}, \vec{c} ] = 1\). The expression we need to evaluate is: \[ \frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{\vec{c} \times \vec{a} \cdot \vec{b}} + \frac{\vec{b} \cdot (\vec{c} \times \vec{a})}{\vec{a} \times \vec{b} \cdot \vec{c}} + \frac{\vec{c} \cdot (\vec{a} \times \vec{b})}{\vec{b} \times \vec{c} \cdot \vec{a}} \] ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|64 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc are three non-coplanar vectors, then find the value of (veca.(vecbxxvecc))/(vecb.(veccxxveca))+(vecb.(veccxxveca))/(vecc.(vecaxxvecb))+(vecc.(vecbxxveca))/(veca.(vecbxxvecc))

If veca, vecb and vecc are three non-coplanar vectors, then find the value of (veca.(vecbxxvecc))/(vecb.(veccxxveca))+(vecb.(veccxxveca))/(vecc.(vecaxxvecb))+(vecc.(vecbxxveca))/(veca.(vecbxxvecc))

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

If veca+vecb+vecc=0 , prove that (vecaxxvecb)=(vecbxxvecc)=(veccxxveca)

If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecbxxvecc))/((veccxxveca).vecb)+(vecb.(vecaxxvecc))/(vecc.(vecaxxvecb)) is equal to

If veca,vecb,vecc be non coplanar vectors and vecp=(vecbxxvecc)/[veca vecb vecc], vecq=(veccxxveca)/[veca vecb vecc], vecr=(vecaxxvecb)/[veca vecb vecc] then (A) vecp.veca=1 (B) vecp.veca+vecq+vecb+vecr.vecc=3 (C) vecp.veca+vecq.vecb+vecr.vecc=0 (D) none of these

For any three vectors veca, vecb, vecc the value of vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb) , is

If veca+2vecb=3vecb=0, then vecaxxvecb+vecbxxvecc+veccxxveca= (A) 2(vecaxxvecb) (B) 6(vecbxxvecc) (C) 3(veccxxveca) (D) 0

For vectors veca,vecb,vecc,vecd, vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc and (vecaxxvecb).(veccxxvecd)=(veca.vecc)(vecb.vecd)(veca.vecd)(vecb.vecc) Now answer the following question: (vecaxxvecb).(vecxxvecd) is equal to (A) veca.(vecbxx(vecxxvecd)) (B) |veca|(vecb.(veccxxvecd)) (C) |vecaxxvecb|.|veccxxvecdD| (D) none of these

OBJECTIVE RD SHARMA-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. If [veca vecb vecc]=1 then value of (veca.vecbxxvecc)/(veccxxveca.vecb...

    Text Solution

    |

  2. For non zero vectors veca,vecb, vecc |(vecaxxvecb).vec|=|veca||vecb|...

    Text Solution

    |

  3. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  4. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  5. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  6. If veca, vecb, vecc are three non-coplanar mutually perpendicular unit...

    Text Solution

    |

  7. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  8. If the vectors vecr(1)=ahati+hatj+hatk, vecr(2)=hati+bhatj+hatk, vecr(...

    Text Solution

    |

  9. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  10. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  11. For any these vectors veca,vecb, vecc the expression (veca-vecb).{(vec...

    Text Solution

    |

  12. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  13. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  14. Let veca, vecb, vecc be three non-coplanar vectors and vecp,vecq,vecr ...

    Text Solution

    |

  15. If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecbxxvecc))...

    Text Solution

    |

  16. Let veca=a(1)hati+a(2)hatj+a(3)hatk, vecb=b(1)hati+b(2)hatj+b(3)hatk a...

    Text Solution

    |

  17. If the non zero vectors veca and vecb are perpendicular to each other,...

    Text Solution

    |

  18. Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=pveca vecb vecc](veca.ve...

    Text Solution

    |

  19. If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) then

    Text Solution

    |

  20. If veca,vecb,vecc and vecp,vecq,vecr are reciprocal system of vectors,...

    Text Solution

    |

  21. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |