Home
Class 12
MATHS
If veca=2hati+3hatj+hatk, vecb=hati-2hat...

If `veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk` and `vecc=-3hati+hatj+2hatk`, then `[veca vecb vecc]=`

A

0.3

B

-0.3

C

0.15

D

-0.15

Text Solution

AI Generated Solution

The correct Answer is:
To find the scalar triple product \([ \vec{a} \, \vec{b} \, \vec{c} ]\), we will compute the determinant of the matrix formed by the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). Given: \[ \vec{a} = 2\hat{i} + 3\hat{j} + \hat{k} \] \[ \vec{b} = \hat{i} - 2\hat{j} + \hat{k} \] \[ \vec{c} = -3\hat{i} + \hat{j} + 2\hat{k} \] ### Step 1: Write the vectors in matrix form We will create a matrix with the coefficients of \(\hat{i}\), \(\hat{j}\), and \(\hat{k}\) from each vector: \[ \begin{vmatrix} 2 & 3 & 1 \\ 1 & -2 & 1 \\ -3 & 1 & 2 \end{vmatrix} \] ### Step 2: Calculate the determinant We will calculate the determinant using the formula for a 3x3 matrix: \[ \text{Det} = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is: \[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \] For our matrix: - \(a = 2\), \(b = 3\), \(c = 1\) - \(d = 1\), \(e = -2\), \(f = 1\) - \(g = -3\), \(h = 1\), \(i = 2\) Now, substituting these values into the determinant formula: \[ \text{Det} = 2((-2)(2) - (1)(1)) - 3((1)(2) - (1)(-3)) + 1((1)(1) - (-2)(-3)) \] Calculating each term: 1. First term: \[ 2((-4) - 1) = 2(-5) = -10 \] 2. Second term: \[ -3(2 + 3) = -3(5) = -15 \] 3. Third term: \[ 1(1 - 6) = 1(-5) = -5 \] Now, summing these results: \[ \text{Det} = -10 - 15 - 5 = -30 \] ### Step 3: Final result The scalar triple product \([ \vec{a} \, \vec{b} \, \vec{c} ]\) is: \[ [ \vec{a} \, \vec{b} \, \vec{c} ] = -30 \] ### Summary Thus, the final answer is: \[ [ \vec{a} \, \vec{b} \, \vec{c} ] = -30 \]

To find the scalar triple product \([ \vec{a} \, \vec{b} \, \vec{c} ]\), we will compute the determinant of the matrix formed by the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). Given: \[ \vec{a} = 2\hat{i} + 3\hat{j} + \hat{k} \] \[ \vec{b} = \hat{i} - 2\hat{j} + \hat{k} ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|64 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If vecaa=hati+2hatj+3hatk, vecb=2hati-hatj+hatk and vecc=hati+hatj-2hatk, verify that vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc.

If veca=2hati + hatj + hatk,vecb=hati + 2hatj + 2hatk ,vecc= hati + hatj + 2hatk and [vecavecbveci] hati+ [vecavecb vecj] hatj+ [veca vecb hatk] k is equal to

If veca=2hati+2hatj-hatk, vecb=3hati-hatj-hatk and vecc=hati+2hatj-3hatk then verify that vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc .

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

if veca=hati-hatj-3hatk, vecb=4hati-3hatj+hatk and vecc=2hati+hatj+2hatk, verify that vecaxx(vecb+vecc)=vecaxxvecb+vecaxxvecc

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+jhatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

If veca=2hati-3hatj+5hatk , vecb=3hati-4hatj+5hatk and vecc=5hati-3hatj-2hatk , then the volume of the parallelopiped with coterminous edges veca+vecb,vecb+vecc,vecc+veca is

If veca=hati+hatj+hatk , vecb=2hati+hatj-hatk and vecc=4hati+3hatj+hatk then value of ((veca+vecb)xx(veca -(veca-vecb)xxvecb)))xxvecc is

OBJECTIVE RD SHARMA-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2h...

    Text Solution

    |

  2. For non zero vectors veca,vecb, vecc |(vecaxxvecb).vec|=|veca||vecb|...

    Text Solution

    |

  3. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  4. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  5. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  6. If veca, vecb, vecc are three non-coplanar mutually perpendicular unit...

    Text Solution

    |

  7. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  8. If the vectors vecr(1)=ahati+hatj+hatk, vecr(2)=hati+bhatj+hatk, vecr(...

    Text Solution

    |

  9. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  10. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  11. For any these vectors veca,vecb, vecc the expression (veca-vecb).{(vec...

    Text Solution

    |

  12. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  13. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  14. Let veca, vecb, vecc be three non-coplanar vectors and vecp,vecq,vecr ...

    Text Solution

    |

  15. If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecbxxvecc))...

    Text Solution

    |

  16. Let veca=a(1)hati+a(2)hatj+a(3)hatk, vecb=b(1)hati+b(2)hatj+b(3)hatk a...

    Text Solution

    |

  17. If the non zero vectors veca and vecb are perpendicular to each other,...

    Text Solution

    |

  18. Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=pveca vecb vecc](veca.ve...

    Text Solution

    |

  19. If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) then

    Text Solution

    |

  20. If veca,vecb,vecc and vecp,vecq,vecr are reciprocal system of vectors,...

    Text Solution

    |

  21. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |