Home
Class 12
MATHS
If veca, vecb, vecc are three non-coplan...

If `veca, vecb, vecc` are three non-coplanar vetors represented by non-current edges of a parallelopiped of volume 4 units, then the value of
`(veca+vecb).(vecbxxvecc)+(vecb+vecc).(veccxxveca)+(vecc+veca).(vecaxxvecb)`, is

A

12

B

4

C

`+-12`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ (\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{c}) + (\vec{b} + \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{c} + \vec{a}) \cdot (\vec{a} \times \vec{b}) \] Given that \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are non-coplanar vectors representing the edges of a parallelepiped with a volume of 4 units, we know that: \[ |\vec{a} \cdot (\vec{b} \times \vec{c})| = 4 \] ### Step-by-Step Solution: 1. **Expand the first term**: \[ (\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{c}) = \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{b} \cdot (\vec{b} \times \vec{c}) \] Since \(\vec{b} \cdot (\vec{b} \times \vec{c}) = 0\) (the dot product of a vector with a vector perpendicular to it is zero), we have: \[ (\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{c}) = \vec{a} \cdot (\vec{b} \times \vec{c}) \] 2. **Expand the second term**: \[ (\vec{b} + \vec{c}) \cdot (\vec{c} \times \vec{a}) = \vec{b} \cdot (\vec{c} \times \vec{a}) + \vec{c} \cdot (\vec{c} \times \vec{a}) \] Again, \(\vec{c} \cdot (\vec{c} \times \vec{a}) = 0\), so: \[ (\vec{b} + \vec{c}) \cdot (\vec{c} \times \vec{a}) = \vec{b} \cdot (\vec{c} \times \vec{a}) \] 3. **Expand the third term**: \[ (\vec{c} + \vec{a}) \cdot (\vec{a} \times \vec{b}) = \vec{c} \cdot (\vec{a} \times \vec{b}) + \vec{a} \cdot (\vec{a} \times \vec{b}) \] Here, \(\vec{a} \cdot (\vec{a} \times \vec{b}) = 0\), thus: \[ (\vec{c} + \vec{a}) \cdot (\vec{a} \times \vec{b}) = \vec{c} \cdot (\vec{a} \times \vec{b}) \] 4. **Combine all the terms**: Now we can combine all the simplified terms: \[ \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{b} \cdot (\vec{c} \times \vec{a}) + \vec{c} \cdot (\vec{a} \times \vec{b}) \] 5. **Use the scalar triple product**: The expression \(\vec{a} \cdot (\vec{b} \times \vec{c})\) is the scalar triple product, which gives the volume of the parallelepiped formed by the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). Thus: \[ \vec{a} \cdot (\vec{b} \times \vec{c}) = 4 \] Similarly, we can show that: \[ \vec{b} \cdot (\vec{c} \times \vec{a}) = 4 \quad \text{and} \quad \vec{c} \cdot (\vec{a} \times \vec{b}) = 4 \] 6. **Final calculation**: Therefore, we have: \[ 4 + 4 + 4 = 12 \] ### Final Answer: The value of the expression is \(12\).

To solve the problem, we need to evaluate the expression: \[ (\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{c}) + (\vec{b} + \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{c} + \vec{a}) \cdot (\vec{a} \times \vec{b}) \] Given that \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are non-coplanar vectors representing the edges of a parallelepiped with a volume of 4 units, we know that: ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|64 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos
OBJECTIVE RD SHARMA-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. If veca, vecb, vecc are three non-coplanar vetors represented by non-c...

    Text Solution

    |

  2. For non zero vectors veca,vecb, vecc |(vecaxxvecb).vec|=|veca||vecb|...

    Text Solution

    |

  3. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  4. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  5. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  6. If veca, vecb, vecc are three non-coplanar mutually perpendicular unit...

    Text Solution

    |

  7. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  8. If the vectors vecr(1)=ahati+hatj+hatk, vecr(2)=hati+bhatj+hatk, vecr(...

    Text Solution

    |

  9. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  10. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  11. For any these vectors veca,vecb, vecc the expression (veca-vecb).{(vec...

    Text Solution

    |

  12. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  13. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  14. Let veca, vecb, vecc be three non-coplanar vectors and vecp,vecq,vecr ...

    Text Solution

    |

  15. If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecbxxvecc))...

    Text Solution

    |

  16. Let veca=a(1)hati+a(2)hatj+a(3)hatk, vecb=b(1)hati+b(2)hatj+b(3)hatk a...

    Text Solution

    |

  17. If the non zero vectors veca and vecb are perpendicular to each other,...

    Text Solution

    |

  18. Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=pveca vecb vecc](veca.ve...

    Text Solution

    |

  19. If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) then

    Text Solution

    |

  20. If veca,vecb,vecc and vecp,vecq,vecr are reciprocal system of vectors,...

    Text Solution

    |

  21. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |