Home
Class 12
MATHS
The edges of a parallelopiped are of uni...

The edges of a parallelopiped are of unit length and a parallel to non-coplanar unit vectors `hata, hatb, hatc` such that `hata.hatb=hatb.hatc=hatc.veca=1//2`. Then the volume of the parallelopiped in cubic units is

A

`1/(sqrt(2))`

B

`1/(2sqrt(2))`

C

`(sqrt(3))/2`

D

`1/(sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of the parallelepiped formed by the unit vectors \(\hat{a}\), \(\hat{b}\), and \(\hat{c}\), we will use the scalar triple product formula. The volume \(V\) of a parallelepiped defined by three vectors \(\vec{u}\), \(\vec{v}\), and \(\vec{w}\) is given by: \[ V = |\vec{u} \cdot (\vec{v} \times \vec{w})| \] In this case, the vectors are \(\hat{a}\), \(\hat{b}\), and \(\hat{c}\). The volume can also be expressed in terms of the determinant of the matrix formed by these vectors: \[ V = |\det(\hat{a}, \hat{b}, \hat{c})| \] ### Step 1: Write the dot products in matrix form Given the dot products: - \(\hat{a} \cdot \hat{b} = \frac{1}{2}\) - \(\hat{b} \cdot \hat{c} = \frac{1}{2}\) - \(\hat{c} \cdot \hat{a} = \frac{1}{2}\) We can represent the vectors in a matrix form as follows: \[ \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 1 \end{bmatrix} \] ### Step 2: Calculate the determinant of the matrix To find the volume, we need to calculate the determinant of the above matrix: \[ D = \begin{vmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 1 \end{vmatrix} \] Using the determinant formula for a \(3 \times 3\) matrix: \[ D = 1 \cdot \begin{vmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{vmatrix} - \frac{1}{2} \cdot \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 \end{vmatrix} + \frac{1}{2} \cdot \begin{vmatrix} \frac{1}{2} & 1 \\ \frac{1}{2} & \frac{1}{2} \end{vmatrix} \] Calculating each of these \(2 \times 2\) determinants: 1. \(\begin{vmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{vmatrix} = 1 \cdot 1 - \frac{1}{2} \cdot \frac{1}{2} = 1 - \frac{1}{4} = \frac{3}{4}\) 2. \(\begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 \end{vmatrix} = \frac{1}{2} \cdot 1 - \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}\) 3. \(\begin{vmatrix} \frac{1}{2} & 1 \\ \frac{1}{2} & \frac{1}{2} \end{vmatrix} = \frac{1}{2} \cdot \frac{1}{2} - 1 \cdot \frac{1}{2} = \frac{1}{4} - \frac{1}{2} = -\frac{1}{4}\) Substituting back into the determinant expression: \[ D = 1 \cdot \frac{3}{4} - \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot -\frac{1}{4} \] \[ D = \frac{3}{4} - \frac{1}{8} - \frac{1}{8} = \frac{3}{4} - \frac{2}{8} = \frac{3}{4} - \frac{1}{4} = \frac{2}{4} = \frac{1}{2} \] ### Step 3: Calculate the volume The volume \(V\) is the absolute value of the determinant: \[ V = |D| = \left|\frac{1}{2}\right| = \frac{1}{2} \] Thus, the volume of the parallelepiped is \(\frac{1}{2}\) cubic units.

To find the volume of the parallelepiped formed by the unit vectors \(\hat{a}\), \(\hat{b}\), and \(\hat{c}\), we will use the scalar triple product formula. The volume \(V\) of a parallelepiped defined by three vectors \(\vec{u}\), \(\vec{v}\), and \(\vec{w}\) is given by: \[ V = |\vec{u} \cdot (\vec{v} \times \vec{w})| \] In this case, the vectors are \(\hat{a}\), \(\hat{b}\), and \(\hat{c}\). The volume can also be expressed in terms of the determinant of the matrix formed by these vectors: ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|64 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

The edges of a parallelopiped are of unit length and are parallel to non coplanar unit vectors hata,hatb,hatc such that hata.hatb=hatb.hatc=hatc.hata=1/2 Then the volume of the parallelopiped is (A) 1/sqrt(2) (B) 1/(2sqrt(2)) (C) sqrt(3)/2 (D) 1/sqrt(3)

The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vectors vec a, vec b, vec c such that hat a.hatb=hatb .hatc=hatc.hata=1/2. Then, the volume of parallelopiped is

The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vectors hat(a), hat(b), hat(c) such that hat(a)*hat(b)=hat(b)*hat(c)=hat(c)*hat(a)=(1)/(2). Then, the volume of the parallelopiped is

The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vectors hat(a), hat(b), hat(c ) such that hat(a).hat(b)=hat(b).hat(c )=hat(c ).hat(a)=(1)/(3) . Then, the volume of the parallelopiped is :-

The edges of a parallelopiped of unit length are parallal to non-coplanar unit vectors widehat a,hat b,hat c such that widehat a.hat b=hat b*hat c=hat c.widehat a=1/2, then the volume of parallelopiped whose edges are widehat a xxhat b,hat b xxhat chat c xx widehat a is

The deges of a parallelopied are of unit length and are parallel to non- coplanar unit vector hat(a), hat(b) , hat(c ) such that hat(a) , hat(b) = hat(b), hat( c)=hat(c ), hat(a) = .(1)/(2). Then the volume of the parallelopiped is

If vectors hata, hatb, hatc are in space such that hata.hatb=hatb.hatc=hatc.hata=1/2 , then (hataxxhatb).(hataxx(hatbxxhatc)) is equal to

If hata, hatb, hatc are unit vectors such that hata+hatb+hatc=0 then find the value of hata.hatb+hatb.hatc+hatc.hata

OBJECTIVE RD SHARMA-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. The edges of a parallelopiped are of unit length and a parallel to non...

    Text Solution

    |

  2. For non zero vectors veca,vecb, vecc |(vecaxxvecb).vec|=|veca||vecb|...

    Text Solution

    |

  3. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  4. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  5. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  6. If veca, vecb, vecc are three non-coplanar mutually perpendicular unit...

    Text Solution

    |

  7. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  8. If the vectors vecr(1)=ahati+hatj+hatk, vecr(2)=hati+bhatj+hatk, vecr(...

    Text Solution

    |

  9. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  10. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  11. For any these vectors veca,vecb, vecc the expression (veca-vecb).{(vec...

    Text Solution

    |

  12. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  13. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  14. Let veca, vecb, vecc be three non-coplanar vectors and vecp,vecq,vecr ...

    Text Solution

    |

  15. If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecbxxvecc))...

    Text Solution

    |

  16. Let veca=a(1)hati+a(2)hatj+a(3)hatk, vecb=b(1)hati+b(2)hatj+b(3)hatk a...

    Text Solution

    |

  17. If the non zero vectors veca and vecb are perpendicular to each other,...

    Text Solution

    |

  18. Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=pveca vecb vecc](veca.ve...

    Text Solution

    |

  19. If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) then

    Text Solution

    |

  20. If veca,vecb,vecc and vecp,vecq,vecr are reciprocal system of vectors,...

    Text Solution

    |

  21. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |