Home
Class 12
MATHS
For an vector veca the value of hatixx...

For an vector `veca` the value of
`hatixx(vecaxxveci)+hatjxx(vecaxxhatj)+hatkxx(vecaxxveck)`, is

A

`veca`

B

`2veca`

C

`3veca`

D

`vec0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \( \hat{i} \times (\vec{a} \times \hat{i}) + \hat{j} \times (\vec{a} \times \hat{j}) + \hat{k} \times (\vec{a} \times \hat{k}) \), we will use the vector triple product identity, which states that \( \vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w}) \vec{v} - (\vec{u} \cdot \vec{v}) \vec{w} \). ### Step-by-step Solution: 1. **Identify the vectors**: Let \( \vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \). 2. **Calculate \( \hat{i} \times (\vec{a} \times \hat{i}) \)**: Using the vector triple product identity: \[ \hat{i} \times (\vec{a} \times \hat{i}) = (\hat{i} \cdot \hat{i}) \vec{a} - (\hat{i} \cdot \vec{a}) \hat{i} \] Here, \( \hat{i} \cdot \hat{i} = 1 \) and \( \hat{i} \cdot \vec{a} = a_1 \). Thus, \[ \hat{i} \times (\vec{a} \times \hat{i}) = \vec{a} - a_1 \hat{i} = (a_2 \hat{j} + a_3 \hat{k}). \] 3. **Calculate \( \hat{j} \times (\vec{a} \times \hat{j}) \)**: Similarly, \[ \hat{j} \times (\vec{a} \times \hat{j}) = (\hat{j} \cdot \hat{j}) \vec{a} - (\hat{j} \cdot \vec{a}) \hat{j} \] Here, \( \hat{j} \cdot \hat{j} = 1 \) and \( \hat{j} \cdot \vec{a} = a_2 \). Thus, \[ \hat{j} \times (\vec{a} \times \hat{j}) = \vec{a} - a_2 \hat{j} = (a_1 \hat{i} + a_3 \hat{k}). \] 4. **Calculate \( \hat{k} \times (\vec{a} \times \hat{k}) \)**: Following the same process, \[ \hat{k} \times (\vec{a} \times \hat{k}) = (\hat{k} \cdot \hat{k}) \vec{a} - (\hat{k} \cdot \vec{a}) \hat{k} \] Here, \( \hat{k} \cdot \hat{k} = 1 \) and \( \hat{k} \cdot \vec{a} = a_3 \). Thus, \[ \hat{k} \times (\vec{a} \times \hat{k}) = \vec{a} - a_3 \hat{k} = (a_1 \hat{i} + a_2 \hat{j}). \] 5. **Combine all results**: Now, we can combine the results from steps 2, 3, and 4: \[ \hat{i} \times (\vec{a} \times \hat{i}) + \hat{j} \times (\vec{a} \times \hat{j}) + \hat{k} \times (\vec{a} \times \hat{k}) = (a_2 \hat{j} + a_3 \hat{k}) + (a_1 \hat{i} + a_3 \hat{k}) + (a_1 \hat{i} + a_2 \hat{j}). \] Simplifying this gives: \[ = 2a_1 \hat{i} + 2a_2 \hat{j} + 2a_3 \hat{k} = 2(a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}) = 2\vec{a}. \] ### Final Answer: Thus, the value of the expression is \( 2\vec{a} \).

To solve the given expression \( \hat{i} \times (\vec{a} \times \hat{i}) + \hat{j} \times (\vec{a} \times \hat{j}) + \hat{k} \times (\vec{a} \times \hat{k}) \), we will use the vector triple product identity, which states that \( \vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w}) \vec{v} - (\vec{u} \cdot \vec{v}) \vec{w} \). ### Step-by-step Solution: 1. **Identify the vectors**: Let \( \vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \). 2. **Calculate \( \hat{i} \times (\vec{a} \times \hat{i}) \)**: ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|64 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxhatj)+hatkxx(vecrxxhatk) , is

Prove that hati xx(vecaxxveci)+hatjxx(vecaxxvecj)+hatkxx(vecaxxveck)=2veca

The value of hati xx(hatixxa)+hatjxx(hatjxxa) +hatk xx(hatkxxa) is

If veca is any vector and hati,hatj and hatk are unit vectors along the x,y and z directions then hatixx(vecaxxhati)+hatjxx(vecaxxhatj)+hatkxx(vecaxxveck)= (A) veca (B) -veca (C) 2veca (D) 0

For any vector veca the value of (vecaxxhati)^2+(vecaxxhatj)^2+(vecaxxhatk)^2 is equal to (A) 4veca^2 (B) 2veca^2 (C) veca^2 (D) 3veca^2

Prove that : vecixx(vecaxxveci)+vecjxx(vecaxxvecj)+veckxx(vecaxxveck)=vec(2a)

Find the value of |hatixx(hati+hatj+hatk)|

prove that (veca.hati)(vecaxxhati)+(veca.hatj)(vecaxxhatj)+(veca.hatk)(vecaxxhatk)=vec0

prove that (veca.hati)(vecaxxhati)+(veca.hatj)(vecaxxhatj)+(veca.hatk)(vecaxxhatk)=vec0

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of (vecaxxveca\')+(vecbxxvecb)+(vecccxxveccc\') is (A) veca+vecb+vec (B) veca\'+vecb\'+vec\' (C) 0 (D) none of these

OBJECTIVE RD SHARMA-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. For an vector veca the value of hatixx(vecaxxveci)+hatjxx(vecaxxhatj...

    Text Solution

    |

  2. For non zero vectors veca,vecb, vecc |(vecaxxvecb).vec|=|veca||vecb|...

    Text Solution

    |

  3. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  4. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  5. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  6. If veca, vecb, vecc are three non-coplanar mutually perpendicular unit...

    Text Solution

    |

  7. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  8. If the vectors vecr(1)=ahati+hatj+hatk, vecr(2)=hati+bhatj+hatk, vecr(...

    Text Solution

    |

  9. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  10. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  11. For any these vectors veca,vecb, vecc the expression (veca-vecb).{(vec...

    Text Solution

    |

  12. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  13. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  14. Let veca, vecb, vecc be three non-coplanar vectors and vecp,vecq,vecr ...

    Text Solution

    |

  15. If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecbxxvecc))...

    Text Solution

    |

  16. Let veca=a(1)hati+a(2)hatj+a(3)hatk, vecb=b(1)hati+b(2)hatj+b(3)hatk a...

    Text Solution

    |

  17. If the non zero vectors veca and vecb are perpendicular to each other,...

    Text Solution

    |

  18. Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=pveca vecb vecc](veca.ve...

    Text Solution

    |

  19. If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) then

    Text Solution

    |

  20. If veca,vecb,vecc and vecp,vecq,vecr are reciprocal system of vectors,...

    Text Solution

    |

  21. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |