Home
Class 12
MATHS
Let vecx, vecy and vecz be three vectors...

Let `vecx, vecy` and `vecz` be three vectors each of magnitude `sqrt(2)` and the angle between each pair of them is `pi/3`. If `veca` is a non-zero vector perpendicular to `vecx` and `vecyxxvecz` and `vecb` is a non zero vector perpendicular to `vecy` and `veczxxvecx` then

A

`vecb=(vecb.vecz)(vecz-vecx)`

B

`veca=(veca.vecy)(vecy-vecz)`

C

`veca.vecb=-(veca.vecy)(vecb.vecz)`

D

`veca=(veca.vecy)(vecz-vecy)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Understand the Given Information We have three vectors \( \vec{x}, \vec{y}, \vec{z} \) each with a magnitude of \( \sqrt{2} \) and the angle between each pair of them is \( \frac{\pi}{3} \). ### Step 2: Calculate the Dot Products The dot product of two vectors can be calculated using the formula: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\theta) \] where \( \theta \) is the angle between the vectors. 1. **Calculate \( \vec{x} \cdot \vec{y} \)**: \[ \vec{x} \cdot \vec{y} = |\vec{x}| |\vec{y}| \cos\left(\frac{\pi}{3}\right) = \sqrt{2} \cdot \sqrt{2} \cdot \frac{1}{2} = 2 \cdot \frac{1}{2} = 1 \] 2. **Calculate \( \vec{y} \cdot \vec{z} \)**: \[ \vec{y} \cdot \vec{z} = |\vec{y}| |\vec{z}| \cos\left(\frac{\pi}{3}\right) = \sqrt{2} \cdot \sqrt{2} \cdot \frac{1}{2} = 1 \] 3. **Calculate \( \vec{z} \cdot \vec{x} \)**: \[ \vec{z} \cdot \vec{x} = |\vec{z}| |\vec{x}| \cos\left(\frac{\pi}{3}\right) = \sqrt{2} \cdot \sqrt{2} \cdot \frac{1}{2} = 1 \] ### Step 3: Establish the Perpendicular Vectors Let \( \vec{a} \) be a vector perpendicular to \( \vec{x} \) and \( \vec{y} \times \vec{z} \). Let \( \vec{b} \) be a vector perpendicular to \( \vec{y} \) and \( \vec{z} \times \vec{x} \). ### Step 4: Find the Dot Product \( \vec{a} \cdot \vec{b} \) Since \( \vec{a} \) is perpendicular to \( \vec{x} \) and \( \vec{y} \times \vec{z} \), and \( \vec{b} \) is perpendicular to \( \vec{y} \) and \( \vec{z} \times \vec{x} \), we can use the property of dot products for perpendicular vectors. 1. **Using the property of dot products**: \[ \vec{a} \cdot \vec{b} = 0 \] This is because \( \vec{a} \) and \( \vec{b} \) are perpendicular to vectors that are not parallel, thus their dot product is zero. ### Final Result Thus, the value of \( \vec{a} \cdot \vec{b} \) is: \[ \vec{a} \cdot \vec{b} = 0 \]

To solve the problem, we will follow these steps: ### Step 1: Understand the Given Information We have three vectors \( \vec{x}, \vec{y}, \vec{z} \) each with a magnitude of \( \sqrt{2} \) and the angle between each pair of them is \( \frac{\pi}{3} \). ### Step 2: Calculate the Dot Products The dot product of two vectors can be calculated using the formula: \[ ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|64 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

Let vecx, vecy and vecz be three vectors each of magnitude sqrt2 and the angle between each pair of them is pi/3 if veca is a non-zero vector perpendicular to vecx and vecy xx vecz and vecb is a non-zero vector perpendicular to vecy and vecz xx vecx , then

Let vecx, vecy and vecz be three vectors each of magnitude sqrt2 and the angle between each pair of them is pi/3 if veca is a non-zero vector perpendicular to vecx and vecy xx vecz and vecb is a non-zero vector perpendicular to vecy and vecz xx vecx , then

Let vecx,vecy and vecz be three vector each of magnitude sqrt(2) and the angle between each pair of them is (pi)/(3). if veca is a non - zero vector perpendicular to vecx and vecy xxvecz and vecb is a non-zero vector perpendicular to vecy and vecz xx vecx, then

Let x, y and z be three vectors each of magnitude V2 tion on and the angle between each pair of them is E. If a is a let non-zero vector perpendicular to x and yx z and b is a non-zero tor perpendicular to y and z x x, then 1.

Let veca, vecb , vecc be three vectors of equal magnitude such that the angle between each pair is pi/3 . If |veca + vecb + vec| = sqrt6 , " then " |veca|=

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If veca is perpendicular to vecb and vecr is a non-zero vector such that pvecr + (vecr.vecb)veca=vecc , then vecr is:

if veca,vecb and vecc are mutally perpendicular vectors of equal magnitudes, then find the angle between vectors and veca+ vecb+vecc .

If two non-zero vectors are perpendicular to each other then their Scalar product is equal to ?

Show that |veca|vecb+|vecb|veca is perpendicular to |veca|vecb-|vecb|veca for any two non zero vectors veca and vecb .

OBJECTIVE RD SHARMA-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. Let vecx, vecy and vecz be three vectors each of magnitude sqrt(2) an...

    Text Solution

    |

  2. For non zero vectors veca,vecb, vecc |(vecaxxvecb).vec|=|veca||vecb|...

    Text Solution

    |

  3. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  4. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  5. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  6. If veca, vecb, vecc are three non-coplanar mutually perpendicular unit...

    Text Solution

    |

  7. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  8. If the vectors vecr(1)=ahati+hatj+hatk, vecr(2)=hati+bhatj+hatk, vecr(...

    Text Solution

    |

  9. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  10. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  11. For any these vectors veca,vecb, vecc the expression (veca-vecb).{(vec...

    Text Solution

    |

  12. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  13. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  14. Let veca, vecb, vecc be three non-coplanar vectors and vecp,vecq,vecr ...

    Text Solution

    |

  15. If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecbxxvecc))...

    Text Solution

    |

  16. Let veca=a(1)hati+a(2)hatj+a(3)hatk, vecb=b(1)hati+b(2)hatj+b(3)hatk a...

    Text Solution

    |

  17. If the non zero vectors veca and vecb are perpendicular to each other,...

    Text Solution

    |

  18. Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=pveca vecb vecc](veca.ve...

    Text Solution

    |

  19. If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) then

    Text Solution

    |

  20. If veca,vecb,vecc and vecp,vecq,vecr are reciprocal system of vectors,...

    Text Solution

    |

  21. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |