Home
Class 12
MATHS
Statement 1: If veca, vecb are non zero ...

Statement 1: If `veca, vecb` are non zero and non collinear vectors, then
`vecaxxvecb=[(veca, vecb, hati)]hati+[(veca, vecb, hatj)]hatj+[(veca, vecb, hatk)]hatk`
Statement 2: For any vector `vecr`
`vecr=(vecr.hati)hati+(vecr.hatj)hatj+(vecr.hatk)hatk`

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
A

Clearly statement -2 is true.
Replacing `vecr` by `vecaxxvecb` in statement -2, we get statement -1. So statement -1 is true.
Hence stetement 2 is correct explanation for statement -1.
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|65 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|64 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

For any vector vecr , ( vecr.hati) hati + ( vecr.hatj) hatj + ( vecr.hatk) hatk =

If veca vecb are non zero and non collinear vectors, then [(veca, vecb, veci)]hati+[(veca, vecb, vecj)]hatj+[(veca, vecb, veck)]hatk is equal to

If veca,vecb are non-collinear vectors, then [(veca,vecb,hati)]hati+[(veca,vecb,hatj)]hatj+[(veca,vecb,hatk)]hatk=

Consider three vectors veca , vecb and vecc Statement 1: vecaxxvecb = ((hatixxveca).vecb)hati+ ((hatj xx veca).vecb)hatj + (hatk xxveca).vecb)hatk Statement 2: vecc= (hati.vecc)hati+ (hatj .vecc) hatj + (hatk. vecc)hatk

Lines vecr xx vecb = veca xx vecb and vecr xx veca = vecb xx veca , where veca =hati + hatj, vecb = 2hati -hatk intersect at

If veca=hati+hatj, vecb=hatj+hatk, vec c hatk+hati , a unit vector parallel to veca+vecb+vecc .

If veca=hati+hatj+hatk, veca.vecb=1 and vecaxxvecb=hatj-hatk then vecb

Statement 1: Let vecr be any vector in space. Then, vecr=(vecr.hati)hati+(vecr.hatj)hatj+(vecr.hatk)hatk Statement 2: If veca, vecb, vecc are three non-coplanar vectors and vecr is any vector in space then vecr={([(vecr, vecb, vecc)])/([(veca, vecb, vecc)])}veca+{([(vecr, vecc, veca)])/([(veca, vecb, vecc)])}vecb+{([(vecr, veca, vecb)])/([(veca, vecb, vecc)])}vecc