Home
Class 12
MATHS
Statement 1: If V is the volume of a par...

Statement 1: If `V` is the volume of a parallelopiped having three coterminous edges as `veca, vecb`, and `vecc`, then the volume of the parallelopiped having three coterminous edges as
`vec(alpha)=(veca.veca)veca+(veca.vecb)vecb+(veca.vecc)vecc`
`vec(beta)=(veca.vecb)veca+(vecb.vecb)vecb+(vecb.vecc)vecc`
`vec(gamma)=(veca.vecc)veca+(vecb.vecc)vecb+(vecc.vecc)vecc` is `V^(3)`
Statement 2: For any three vectors `veca, vecb, vecc`
`|(veca.veca, veca.vecb, veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc)|=[(veca,vecb, vecc)]^(3)`

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
C

We have `|[(veca, vecb, vecc)]|=V`
Let `V_(1)` be the volume of the parallelopiped formed by the vectors `vec(alpha),vec(beta)` and `vec(gamma)`. Then `V_(1)=|[(vec(alpha),vec(beta),vec(gamma))]|`
Now `[(vec(alpha),vec(beta),vec(gamma))]=|(veca.veca, veca.vecb,veca.vecc),(veca.vecb,vecb.vecb,vecb.vecc),(veca.vecc,vecb.vecc.vecc.vecc)|[(veca,vecb,vecc)]`
`implies[(vec(alpha),vec(beta),vec(gamma)]=[(veca,vecb,vecc)]^(2)[(veca,vecb,vecc)]`
`implies[(vec(alpha),vec(beta),(vec(gamma))]=[(veca,vecb,vecc)]^(3)`
`:.V_(1)=|[(vec(alpha),vec(beta),vec(gamma))]|=|[(veca,vecb,vecc)]^(3)|=V^(3)`
Statment -2 is not true.
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|65 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|64 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If V is the volume of the parallelopiped having three coterminous edges as veca,vecb and vecc , then the volume of the parallelopiped having three coterminous edges as vec(alpha)=(veca.veca)veca+(veca.vecb)vecb+(veca.vecc)vecc vec(beta)=(veca.vecb)veca+(vecb.vecb)vecb+(vecb.vecc)vecc vec(gamma)=(veca.vecc)veca+(vecb.vecc)vecb+(vecc.vecc)vecc is

Show that [veca vecb vecc]\^2=|(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc)|

If V is the volume of the parallelepiped having three coterminous edges as veca,vecb and vecc , then the volume of the parallelepiped having three coterminous edges as vecalpha = (veca.veca)veca+(veca.vecb)vecb+(veca.vecc)vecc , vecbeta=(vecb.veca)veca+(vecb.vecb)+(vecb.vecc)vecc and veclambda=(vecc.veca)veca+(vecc.vecb)vecb+(vecc.vecc)vecc is

If vector veca,vecb,vecc are coplanar show that |(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|

If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb,vecc),(veca.veca, veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|=0

For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-vecc, vecc-veca)] , is

The volume of a tetrahedron fomed by the coterminus edges veca , vecb and vecc is 3 . Then the volume of the parallelepiped formed by the coterminus edges veca +vecb, vecb+vecc and vecc + veca is

If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)| where veca, vecb,vecc are coplanar then:

For any three vectors veca, vecb, vecc the value of [(veca+vecb,vecb+vecc,vecc+veca)] is